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Intermediate Proofs

1.1 Lecture

There are several methods used in Intermediate Proofs:
Contradictions: If we want to show that A is true, we use proof by

contradiction by showing that if A is false, then that would result in an
impossibility, thereby resulting in A being true.

Induction: Let’s say we want to prove a statement P (n) for positive
integer n, with n0 being a fixed positive integer. If P (n0) is true and P (k+1)
is true whenever P (k) is, then P (n) is true for n ≥ n0.

Strong Induction: Let’s say we want to prove a statement P (n) for
positive integers n, with n0 being a fixed positive integer. If P (n0) is true
and P (k + 1) is true whenever P (m) is for n0 ≤ m ≤ k, then P (n) is true
for n ≥ n0.

We’ll cover these all in depth throughout this lesson.

Example 1.1.1. Prove that there are infinitely many prime numbers.

Solution. We proceed by proof by contradiction. Assume that there are
only a finite number of prime numbers, namely p1, p2, · · · , pk. Consider the
number M = p1p2 · · · pk + 1. Clearly, M is not divisible by pi for 1 ≤ i ≤ k,
therefore M must be divisible by a prime which is not in our assumed set of
primes, contradiction. There are therefore infinitely many primes.
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Example 1.1.2. Prove that there does not exist integers a, b such that
a2 − 4b = 2.

Solution. Assume for the sake of contradiction that there are integers a, b
that satisfy the above equation. Rearranging the equation, we see that
a2 = 2 + 4b = 2(1 + 2b). Therefore, a must be even. Let a = 2a0 for some
a0. Substituting this back into the equation gives us

(2a0)
2 = 2(1 + 2b) =⇒ 4a20 = 2 + 4b =⇒ 2a20 = 1 + 2b

However, 2a20 and 2b are both even, while 1 is not, therefore the above
equation is a contradiction mod 2.

Note: Some more experienced problem solvers may have instantly noted
that the above equation is a contradiction mod 4 since the possible residues
mod 4 are 0, 1.

Example 1.1.3. Prove that
√

2 is irrational.

Solution. Assume for the sake of contradiction that
√

2 is rational. Therefore√
2 = a

b
for relatively prime a, b. Squaring the equation and multiplying by

b2 on both sides gives us a2 = 2b2. Therefore, 2 | a and a = 2a0 for some a0.
Substituting this back into the equation, we have

4a20 = 2b2 =⇒ 2a20 = b2

Similarly, since the left hand side of the equation is even, b must also be even
and b = 2b0 for some b0. However, gcd(a, b) = 2 gcd(a0, b0), contradicting
the assumption that a and b were relatively prime. Contradiction. Therefore√

2 is irrational.

Example 1.1.4. Prove that for x ∈ [0, π
2
], sin(x) + cos(x) ≥ 1.

Solution. Assume for the sake of contradiction that sin(x) + cos(x) < 1.
Squaring this gives

(sin(x) + cos(x))2 < 1 =⇒ sin2(x)+cos2(x)+2 sin(x) cos(x) < 1 =⇒ 2 sin(x) cos(x) < 0

With the last step following from the Pythagorean Identity that sin2(x) +
cos2(x) = 1. However, x ∈ [0, π

2
], therefore 2 sin(x) cos(x) ≥ 0, contradic-

tion. Therefore for x ∈ [0, π
2
], sin(x) + cos(x) ≥ 1.
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Example 1.1.5. Prove the identity 1 + 2 + 22 + · · ·+ 2n = 2n+1 − 1.

Solution. Base Case: When n = 1, we get 1 + 21 = 22 − 1, which is true.

Inductive Hypothesis: Assume that the problem statement holds for
n = k. We show that it then also holds for n = k + 1. Notice that

1 + 2 + 22 + · · ·+ 2k+1 =
(
1 + 2 + 22 + · · ·+ 2k

)
+ 2k+1

Now, using the inductive hypothesis, 1+2+ · · ·+2k = 2k+1−1. Substituting
this into the above equation gives us

1 + 2 + 22 + · · ·+ 2k+1 =
(
2k+1 − 1

)
+ 2k+1 = 2k+2 − 1

Our induction is complete, and 1 + 2 + 22 + · · · + 2n = 2n+1 − 1 for all
non-negative n.

Example 1.1.6. Prove that 1 ·1!+2 ·2!+3 ·3!+ · · ·+n ·n! = (n+1)!−1

Solution. Base Case: When n = 1, 1 · 1! = (1 + 1)!− 1, which is true.

Inductive Hypothesis: Assume that the problem statement holds for
n = k. We show that it holds for n = k + 1. Notice that

1·1!+2·2!+3·3!+· · ·+k·k!+(k+1)·(k+1)! = (1 · 1! + 2 · 2! + 3 · 3! + · · ·+ k · k!)+(k+1)·(k+1)!

Using the inductive hypothesis, 1 · 1! + 2 · 2! + · · ·+ k · k! = (k + 1)!− 1.
Substituting this into the above equation,

1·1!+2·2!+3·3!+· · ·+(k+1)·(k+1)! = (k+1)!−1+(k+1)·(k+1)! = (k+2)(k+1)!−1 = (k+2)!−1

Example 1.1.7. Show that if n is a positive integer greater than 2, then

1

n + 1
+

1

n + 2
+ · · ·+ 1

2n
>

3
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Solution. Notice that the problem statement says for n being a positive
integer greater than 2, therefore the base case is 3 rather than 1 (in the
formal definition of induction given above, n0 = 3).

Base Case: When n = 3,

1

4
+

1

5
+

1

6
=

37

60
>

36

60
=

3

5

Inductive Hypothesis: Assume the statement holds for n = k. Then,
we show that it also holds for n = k + 1.

Notice that

1

k + 2
+

1

k + 3
+· · ·+ 1

2k + 2
=

1

k + 1
+

1

k + 2
+· · ·+ 1

2k
+

(
1

2k + 1
+

1

2k + 2
− 1

k + 1

)
Using the Inductive Hypothesis, 1

k+1
+ 1

k+2
+ · · ·+ 1

2k
> 3

5
, therefore, substi-

tuting this into the above equation gives us

1

k + 2
+

1

k + 3
+ · · ·+ 1

2k + 2
>

3

5
+

1

2k + 1
+

1

2k + 2
− 1

k + 1

=
3

5
+

1

2k + 1
− 2

2k + 2
+

1

2k + 2

=
3

5
+

1

2k + 1
− 1

2k + 2

=
3

5
+

1

(2k + 1)(2k + 2)

Now, using the fact that 1
(2k+1)(2k+1)

> 0, we get

1

k + 2
+

1

k + 3
+ · · ·+ 1

2k + 2
>

3

5
+

1

(2k + 1)(2k + 2)
>

3

5

We are done by induction.

Example 1.1.8. The Fibonacci sequence is defined by F1 = F2 = 1,
and Fn = Fn−1 + Fn−2 for all n ≥ 3. Prove that every positive integer
N can be represented by

N = Fa1 + Fa2 + · · ·+ Fam

for some integers a1, a2, · · · , am satisfying 2 ≤ a1 < a2 < · · · < am.
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Solution. The base case of N = 1 = F2 is trivial. To get a feel for the
problem, consider the number N = 79. How would we go about representing
this as a sum of Fibonacci numbers? Well, the smallest Fibonacci number
less than 79 is 55. Subtract gives 79 − 55 = 24. We then repeat this
procedure. The smallest Fibonacci number less than 24 is 21. Subtracting
yields 24− 21 = 3. Finally, 3 = 2 + 1 = F3 + F2. Therefore, 79 = 55 + 21 +
3 + 1 = F10 + F8 + F3 + F2.

We think of how to generalize this method. In a regular induction prob-
lem, we would assume that it holds for N = K and show that it holds for
N = K + 1. However, in the above example, once we subtract 55 we are left
with a number close to K but less than it. This therefore queues for us to
use strong induction.

Inductive Hypothesis: Assume that the problem statement holds for
all positive integers from 1 to K. We show that the problem statement holds
for K + 1.

Let Fa be the largest Fibonacci number with Fa ≤ K +1. If Fa = K +1,
then we are clearly done. Otherwise, Fa < K + 1 < Fa+1, therefore

0 < (K + 1)− Fa < Fa+1 − Fa = Fa− 1

Now, by our inductive hypothesis, (K + 1)−Fa = Fb1 +Fb2 + · · ·+Fbm .
Furthermore, since (K + 1)− Fa < Fa−1, we have that 2 ≤ b1 < b2 < · · · <
bm < a. Therefore, K + 1 = Fa + Fb1 + Fb2 + · · ·+ Fbm satisfies the desired
condition.

1.2 Problems for the Reader

Problem 1.2.1. Prove that 3
√

3 is irrational.

Problem 1.2.2. Prove that there are infinitely many primes of the form
4k + 3.

Problem 1.2.3. Prove that if a2 − 2a + 7 is even, then a must be odd.

Problem 1.2.4. Prove that the product of 5 consecutive integers is divisible
by 120.

Problem 1.2.5. Prove that the number log2 3 is irrational.
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Problem 1.2.6. Prove that if 4 | (a2 + b2) and a and b are both positive
integers, then a and b cannot both be odd.

Problem 1.2.7. Prove that there are no rational roots to the equation
x3 + x + 1 = 0.

Problem 1.2.8. Prove that there are no (x, y) ∈ Q2 (meaning x and y are
rational) such that x2 + y2 − 3 = 0.

Problem 1.2.9. Prove that if a, b, c are odd integers, then the equation
ax2 + bx + c = 0 does not have any integer roots.

Problem 1.2.10. Prove that the sum of the first n positive integers is n(n+1)
2

.

Problem 1.2.11. Prove that

m!

0!
+

(m + 1)!

1!
+

(m + 2)!

2!
+ · · ·+ (m + n)!

n!
=

(m + n + 1)!

n!(m + 1)

Problem 1.2.12. The kth triangular number is equivalent to k(k+1)
2

. Prove

that the sum of the first n triangular numbers is n(n+1)(n+2)
6

.

Problem 1.2.13. Show that if n is a positive integer, then 1 + 1√
2

+ 1√
3

+

· · ·+ 1√
n
< 2
√
n.

Problem 1.2.14. Use induction and/or telescoping sums to prove that 1
1·3 +

1
3·5 + 1

5·7 + · · ·+ 1
(2n−1)(2n+1)

= n
2n+1

.

Problem 1.2.15. The sequence x1, x2, x3, · · · is defined by x1 = 2 and
xk+1 = x2

k − xk + 1 for all k ≥ 1. Find
∑∞

k=1
1
xk

.

Problem 1.2.16. Prove that n4 ≤ 4n for all positive integers n greater than
3.

Problem 1.2.17. Let x + 1
x

= a, for some integer a. Prove that xn + 1
xn

is
an integer for all n ≥ 0.

Problem 1.2.18. Show that the nth Fibonacci number, Fn =
(
n−1
0

)
+(

n−1
1

)
+ · · ·

Problem 1.2.19. On a large, flat field n people are positioned so that for
each person the distances to all the other people are different. Each person
holds a water pistol and at a given signal fires and hits the person who is
closest. When n is odd show that there is at least one person left dry. Is
this always true when n is even?

Problem 1.2.20. Prove that for all natural n, that 1
12

+ 1
22

+ 1
32

+· · ·+ 1
n2 < 2.
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