ARML: Intermdiate Proofs

Authors

Justin Stevens

1

Intermediate Proofs

1.1 Lecture

There are several methods used in Intermediate Proofs:
Contradictions: If we want to show that A is true, we use proof by contradiction by showing that if A is false, then that would result in an impossibility, thereby resulting in A being true.

Induction: Let's say we want to prove a statement $P(n)$ for positive integer n, with n_{0} being a fixed positive integer. If $P\left(n_{0}\right)$ is true and $P(k+1)$ is true whenever $P(k)$ is, then $P(n)$ is true for $n \geq n_{0}$.

Strong Induction: Let's say we want to prove a statement $P(n)$ for positive integers n, with n_{0} being a fixed positive integer. If $P\left(n_{0}\right)$ is true and $P(k+1)$ is true whenever $P(m)$ is for $n_{0} \leq m \leq k$, then $P(n)$ is true for $n \geq n_{0}$.

We'll cover these all in depth throughout this lesson.

Example 1.1.1. Prove that there are infinitely many prime numbers.
Solution. We proceed by proof by contradiction. Assume that there are only a finite number of prime numbers, namely $p_{1}, p_{2}, \cdots, p_{k}$. Consider the number $M=p_{1} p_{2} \cdots p_{k}+1$. Clearly, M is not divisible by p_{i} for $1 \leq i \leq k$, therefore M must be divisible by a prime which is not in our assumed set of primes, contradiction. There are therefore infinitely many primes.

Example 1.1.2. Prove that there does not exist integers a, b such that $a^{2}-4 b=2$.

Solution. Assume for the sake of contradiction that there are integers a, b that satisfy the above equation. Rearranging the equation, we see that $a^{2}=2+4 b=2(1+2 b)$. Therefore, a must be even. Let $a=2 a_{0}$ for some a_{0}. Substituting this back into the equation gives us

$$
\left(2 a_{0}\right)^{2}=2(1+2 b) \Longrightarrow 4 a_{0}^{2}=2+4 b \Longrightarrow 2 a_{0}^{2}=1+2 b
$$

However, $2 a_{0}^{2}$ and $2 b$ are both even, while 1 is not, therefore the above equation is a contradiction mod 2 .

Note: Some more experienced problem solvers may have instantly noted that the above equation is a contradiction mod 4 since the possible residues $\bmod 4$ are 0,1 .

Example 1.1.3. Prove that $\sqrt{2}$ is irrational.
Solution. Assume for the sake of contradiction that $\sqrt{2}$ is rational. Therefore $\sqrt{2}=\frac{a}{b}$ for relatively prime a, b. Squaring the equation and multiplying by b^{2} on both sides gives us $a^{2}=2 b^{2}$. Therefore, $2 \mid a$ and $a=2 a_{0}$ for some a_{0}. Substituting this back into the equation, we have

$$
4 a_{0}^{2}=2 b^{2} \Longrightarrow 2 a_{0}^{2}=b^{2}
$$

Similarly, since the left hand side of the equation is even, b must also be even and $b=2 b_{0}$ for some b_{0}. However, $\operatorname{gcd}(a, b)=2 \operatorname{gcd}\left(a_{0}, b_{0}\right)$, contradicting the assumption that a and b were relatively prime. Contradiction. Therefore $\sqrt{2}$ is irrational.

Example 1.1.4. Prove that for $x \in\left[0, \frac{\pi}{2}\right], \sin (x)+\cos (x) \geq 1$.
Solution. Assume for the sake of contradiction that $\sin (x)+\cos (x)<1$. Squaring this gives
$(\sin (x)+\cos (x))^{2}<1 \Longrightarrow \sin ^{2}(x)+\cos ^{2}(x)+2 \sin (x) \cos (x)<1 \Longrightarrow 2 \sin (x) \cos (x)<0$
With the last step following from the Pythagorean Identity that $\sin ^{2}(x)+$ $\cos ^{2}(x)=1$. However, $x \in\left[0, \frac{\pi}{2}\right]$, therefore $2 \sin (x) \cos (x) \geq 0$, contradiction. Therefore for $x \in\left[0, \frac{\pi}{2}\right], \sin (x)+\cos (x) \geq 1$.

Example 1.1.5. Prove the identity $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$.

Solution. Base Case: When $n=1$, we get $1+2^{1}=2^{2}-1$, which is true.
Inductive Hypothesis: Assume that the problem statement holds for $n=k$. We show that it then also holds for $n=k+1$. Notice that

$$
1+2+2^{2}+\cdots+2^{k+1}=\left(1+2+2^{2}+\cdots+2^{k}\right)+2^{k+1}
$$

Now, using the inductive hypothesis, $1+2+\cdots+2^{k}=2^{k+1}-1$. Substituting this into the above equation gives us

$$
1+2+2^{2}+\cdots+2^{k+1}=\left(2^{k+1}-1\right)+2^{k+1}=2^{k+2}-1
$$

Our induction is complete, and $1+2+2^{2}+\cdots+2^{n}=2^{n+1}-1$ for all non-negative n.

Example 1.1.6. Prove that $1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+n \cdot n!=(n+1)!-1$

Solution. Base Case: When $n=1,1 \cdot 1!=(1+1)$! -1 , which is true.
Inductive Hypothesis: Assume that the problem statement holds for $n=k$. We show that it holds for $n=k+1$. Notice that
$1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+k \cdot k!+(k+1) \cdot(k+1)!=(1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+k \cdot k!)+(k+1) \cdot(k+1)!$
Using the inductive hypothesis, $1 \cdot 1!+2 \cdot 2!+\cdots+k \cdot k!=(k+1)!-1$. Substituting this into the above equation,
$1 \cdot 1!+2 \cdot 2!+3 \cdot 3!+\cdots+(k+1) \cdot(k+1)!=(k+1)!-1+(k+1) \cdot(k+1)!=(k+2)(k+1)!-1=(k+2)!-1$

Example 1.1.7. Show that if n is a positive integer greater than 2 , then

$$
\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}>\frac{3}{5}
$$

Solution. Notice that the problem statement says for n being a positive integer greater than 2, therefore the base case is 3 rather than 1 (in the formal definition of induction given above, $n_{0}=3$).

Base Case: When $n=3$,

$$
\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}
$$

Inductive Hypothesis: Assume the statement holds for $n=k$. Then, we show that it also holds for $n=k+1$.

Notice that
$\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k+2}=\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k}+\left(\frac{1}{2 k+1}+\frac{1}{2 k+2}-\frac{1}{k+1}\right)$
Using the Inductive Hypothesis, $\frac{1}{k+1}+\frac{1}{k+2}+\cdots+\frac{1}{2 k}>\frac{3}{5}$, therefore, substituting this into the above equation gives us

$$
\begin{aligned}
\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k+2} & >\frac{3}{5}+\frac{1}{2 k+1}+\frac{1}{2 k+2}-\frac{1}{k+1} \\
& =\frac{3}{5}+\frac{1}{2 k+1}-\frac{2}{2 k+2}+\frac{1}{2 k+2} \\
& =\frac{3}{5}+\frac{1}{2 k+1}-\frac{1}{2 k+2} \\
& =\frac{3}{5}+\frac{1}{(2 k+1)(2 k+2)}
\end{aligned}
$$

Now, using the fact that $\frac{1}{(2 k+1)(2 k+1)}>0$, we get

$$
\frac{1}{k+2}+\frac{1}{k+3}+\cdots+\frac{1}{2 k+2}>\frac{3}{5}+\frac{1}{(2 k+1)(2 k+2)}>\frac{3}{5}
$$

We are done by induction.

Example 1.1.8. The Fibonacci sequence is defined by $F_{1}=F_{2}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 3$. Prove that every positive integer N can be represented by

$$
N=F_{a_{1}}+F_{a_{2}}+\cdots+F_{a_{m}}
$$

for some integers $a_{1}, a_{2}, \cdots, a_{m}$ satisfying $2 \leq a_{1}<a_{2}<\cdots<a_{m}$.

Solution. The base case of $N=1=F_{2}$ is trivial. To get a feel for the problem, consider the number $N=79$. How would we go about representing this as a sum of Fibonacci numbers? Well, the smallest Fibonacci number less than 79 is 55 . Subtract gives $79-55=24$. We then repeat this procedure. The smallest Fibonacci number less than 24 is 21 . Subtracting yields $24-21=3$. Finally, $3=2+1=F_{3}+F_{2}$. Therefore, $79=55+21+$ $3+1=F_{10}+F_{8}+F_{3}+F_{2}$.

We think of how to generalize this method. In a regular induction problem, we would assume that it holds for $N=K$ and show that it holds for $N=K+1$. However, in the above example, once we subtract 55 we are left with a number close to K but less than it. This therefore queues for us to use strong induction.

Inductive Hypothesis: Assume that the problem statement holds for all positive integers from 1 to K. We show that the problem statement holds for $K+1$.

Let F_{a} be the largest Fibonacci number with $F_{a} \leq K+1$. If $F_{a}=K+1$, then we are clearly done. Otherwise, $F_{a}<K+1<F_{a+1}$, therefore

$$
0<(K+1)-F_{a}<F_{a+1}-F_{a}=F a-1
$$

Now, by our inductive hypothesis, $(K+1)-F_{a}=F_{b_{1}}+F_{b_{2}}+\cdots+F_{b_{m}}$. Furthermore, since $(K+1)-F_{a}<F_{a-1}$, we have that $2 \leq b_{1}<b_{2}<\cdots<$ $b_{m}<a$. Therefore, $K+1=F_{a}+F_{b_{1}}+F_{b_{2}}+\cdots+F_{b_{m}}$ satisfies the desired condition.

1.2 Problems for the Reader

Problem 1.2.1. Prove that $\sqrt[3]{3}$ is irrational.
Problem 1.2.2. Prove that there are infinitely many primes of the form $4 k+3$.

Problem 1.2.3. Prove that if $a^{2}-2 a+7$ is even, then a must be odd.
Problem 1.2.4. Prove that the product of 5 consecutive integers is divisible by 120 .

Problem 1.2.5. Prove that the number $\log _{2} 3$ is irrational.

Problem 1.2.6. Prove that if $4 \mid\left(a^{2}+b^{2}\right)$ and a and b are both positive integers, then a and b cannot both be odd.

Problem 1.2.7. Prove that there are no rational roots to the equation $x^{3}+x+1=0$.

Problem 1.2.8. Prove that there are no $(x, y) \in \mathbb{Q}^{2}$ (meaning x and y are rational) such that $x^{2}+y^{2}-3=0$.
Problem 1.2.9. Prove that if a, b, c are odd integers, then the equation $a x^{2}+b x+c=0$ does not have any integer roots.
Problem 1.2.10. Prove that the sum of the first n positive integers is $\frac{n(n+1)}{2}$.
Problem 1.2.11. Prove that

$$
\frac{m!}{0!}+\frac{(m+1)!}{1!}+\frac{(m+2)!}{2!}+\cdots+\frac{(m+n)!}{n!}=\frac{(m+n+1)!}{n!(m+1)}
$$

Problem 1.2.12. The k th triangular number is equivalent to $\frac{k(k+1)}{2}$. Prove that the sum of the first n triangular numbers is $\frac{n(n+1)(n+2)}{6}$.
Problem 1.2.13. Show that if n is a positive integer, then $1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+$ $\cdots+\frac{1}{\sqrt{n}}<2 \sqrt{n}$.
Problem 1.2.14. Use induction and/or telescoping sums to prove that $\frac{1}{1.3}+$ $\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$.
Problem 1.2.15. The sequence $x_{1}, x_{2}, x_{3}, \cdots$ is defined by $x_{1}=2$ and $x_{k+1}=x_{k}^{2}-x_{k}+1$ for all $k \geq 1$. Find $\sum_{k=1}^{\infty} \frac{1}{x_{k}}$.
Problem 1.2.16. Prove that $n^{4} \leq 4^{n}$ for all positive integers n greater than 3.

Problem 1.2.17. Let $x+\frac{1}{x}=a$, for some integer a. Prove that $x^{n}+\frac{1}{x^{n}}$ is an integer for all $n \geq 0$.
Problem 1.2.18. Show that the nth Fibonacci number, $F_{n}=\binom{n-1}{0}+$ $\binom{n-1}{1}+\cdots$
Problem 1.2.19. On a large, flat field n people are positioned so that for each person the distances to all the other people are different. Each person holds a water pistol and at a given signal fires and hits the person who is closest. When n is odd show that there is at least one person left dry. Is this always true when n is even?
Problem 1.2.20. Prove that for all natural n, that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}<2$.

