
AUTOMATIC STRUCTURAL SEGMENTATION OF MUSIC
INSIGHTFULLY CLUSTERING THE BEATS IN A GIVEN PIECE OF MUSIC TO

REFLECT IT’S MUSICAL STRUCTURE

by

Lyndon D Quadros

A masters project report submitted in partial fulfillment of

the requirements for the degree of

Master of Science

(Electrical Engineering)

at the

UNIVERSITY OF WISCONSIN–MADISON

December 18, 2015

1

Acknowledgements

I am extremely grateful to my Graduate Adviser and Master’s Project guide Prof. William

Sethares for his constant support, assistance, encouragement and patience during the course of

this project and my Master’s Degree as a whole. Being under his tutelage was utterly enjoyable

and as delightful as it was enlightening.

I wish to extend my gratitude to all the Professors at the Department of Electrical and Com-

puter Engineering shared their knowledge and experience with me during the various courses

I took towards the completion of my degree. The administrative staff of the department have

also been ever helpful and willingly so.

I wish to thank the Department of Physics for providing me funding and monetary support

in the way of a Teaching Assistant-ship. In particular, I wish to convey my heartfelt gratitude

to Dr. James Reardon, who has been a great friend, mentor and guide.

My sincere thanks to Dr. Mark Levy and Ruofeng Chen whose papers and assistance during

the initial stages of this project were instrumental in shaping it.

I wish to thank my friends and colleagues for helping me through difficult and stressful

times, both in and out of school.

Most importantly, the completion of this stage of my life and career would never have been

possible without the patience, love and never-ending support of my parents, my sister and my

family. Last, but not the least, I would like to thank my late grandmother, Mrs. Cecilia Fernades

for her blessings as she continues to be a major influence and a constant pillar of support in my

life.

2

ABSTRACT

This Project posits elementary analogies of existing Probabilistic and Machine Learning

models that have been used to find solutions to the problem of the Structural Segmentation

of Musical audio. I have tried to use the idea that the chord of a given beat or frame of a

song is an analogous representation of the states generated by trained Hidden Markov Models

in generating feature vectors for the aforementioned problem; and that the knowledge of the

temporal boundaries within which, a group of frames lie, can be used as constraints in creating

the feature vectors that are eventually clustered to identify the pattern in which the various

segments of a song repeat.

DISCARD THIS PAGE

3

TABLE OF CONTENTS

Page

ABSTRACT . 2

1 Introduction . 5

1.1 Problem definition and Related Work . 5
1.2 Employed Approach . 7
1.3 Sample Input and Sample Output . 9

2 Feature Extraction and State Labeling . 10

2.1 The Chroma Feature Vector . 10
2.1.1 Pre-Processing . 10
2.1.2 Computing the Chroma Feature . 11

2.2 State Labeling . 11
2.2.1 Estimating the Chord . 12
2.2.2 Elementary Approximation of the Key of the song 12
2.2.3 State Indexing of the Chords and State Labeling of the Beats 13

3 Boundary Detection . 17

3.1 Preliminary Boundary Detection and Smoothing 17
3.2 Temporal and Amplitude Thresholds to reduce the number of detected boundaries 18

4 Clustering . 23

4.1 Histogram of States . 23
4.2 Clustering the Data . 24

4.2.1 The Earth Mover’s Distance (EMD) 25
4.2.2 The EP-means Clustering Algorithm 26
4.2.3 Sub-Optimality of the EP-means Algorithm for the given case 27

4

Page

5 Testing and Evaluation . 29

5.1 Data Set . 29
5.2 Evaluation Metric . 29
5.3 Results . 30

6 Conclusion and Possible Future Development 32

LIST OF REFERENCES . 34

5

Chapter 1

Introduction

1.1 Problem definition and Related Work

The Structural Segmentation of Musical Audio has been a long-existing and challenging

problem in Music Information Retrieval and the solutions to this problem vary from using

matrix completion to systematic clustering of feature vectors of a song. One of the major

reasons for developing Structural Segmentation techniques for musical audio is to achieve Au-

dio Thumbnailing, which is a very useful tool for Music researchers, composers and listeners

alike. Knowledge of the structure of music can also help make tasks such as Automatic Genre

Classification and Recommendation algorithms more accurate; since structure or form, as it is

sometimes called, is a very important characteristic of a song.

The structure or form of a song typically describes the sequence of various parts in the song

or the arrangement of the song. One of the most common is the verse-chorus form; a typical

example of which would be a song with the following structure:

Intro-verse-chorus-verse-chorus-refrain-chorus.

This project aims at finding the right sequence in which these segments repeat; but does

not actually concern itself with the correct human labeling of the segments. For example, for a

song having the structure mentioned above, the output of the method employed in this project

6

will be as follows:

A-B-C-B-C-D-C

This representation of the structure does not cause any loss of information as compared

to the actual verse-chorus- type of representation. Also, what one person would identify as

the refrain of the song might be what some other person identifies as the bridge. Due to such

ambiguity, the standard representation for the structure of a song in already existing literature

has been of the A-B- type mentioned above.

Early work on structural segmentation has been largely based on assuming that the form

of a song can be identified as being one out of a few listed canonical forms (for example, the

intro cannot be at the end). In this case, a brute-force matching of audio features to possible

structural templates [1] or a heuristically constrained search across certain elements of structure

[2], [3] have been the techniques that have been employed.However, such assumptions might

not be very practical for a lot of the songs. In fact, of the Beatles 210 recorded songs, only 23

would follow the introversechorusversechorus sequence; some of those in fact dispense with

the intro, and they continue in several different ways [4].The newer approaches therefore aim

at basing the estimation of structure on a variety of features that humans perceive and analyze

when deciding the structure of music which include the differences in melody, overall feel of

the section, rhythm and beat, changes of instrumentation etc. In [5], the authors used Non-

Negative Matrix factorization, while in [6], the authors developed a system which combined

harmonic and timbral information and then used multi-level clustering and non-negative matrix

factorization to get competitive results.

This project builds primarily on the state labeling and histogram clustering approach in [7],

while also incorporating ideas from [8],[9] and [10]. I have used the Chroma feature vector

in conjunction with Boundary Detection and Histogram Clustering in order to accomplish the

aforementioned task.

7

The following subsection contains an overview of the approach employed in this project.

Chapter 2 gives details about the extraction of the Chroma feature vector and the state labeling

of each beat of the song. Chapter 3 describes the boundary detection method used. Chapter 4

gives details about the creation of the histogram of states, which incorporates the knowledge

about the boundaries obtained in the previous step. It also contains some detail of the clustering

methods used to cluster these histograms of states. Chapter 5 enlists the tests conducted, gives

the metric for evaluating the performance of the algorithm, and gives the results of these tests.

Chapter 6 gives a conclusion to the project and includes possible future development based on

the content of this project.

1.2 Employed Approach

Figure 1.1 shows the bock diagram of the employed approach in this project.

In [7], the authors pose the transitions in a song as a change in the sequence and probability

of the occurrence of states that each beat in the song belongs to. These states are learned from

a Hidden Markov Model. The authors use the Audio Projection Envelope descriptor from the

MPEG-7 standard as a feature vector and assign state labels to each of these vectors in the

vector sequence using a trained Hidden Markov Model. One of the first tasks I undertook in

this project was to be able to make an educated guess of what these states could be or find an

analog of these states that can be computed without the use of Hidden Markov Models. The

guess was that these states could correspond to a certain chord or some kind of musical spectral

information. In order to compute this information/chord, I used the Chroma feature vector and

assigned states accordingly. Section 2.2 contains the details of the state labeling approach.

The system then detects the approximate number of boundaries in a given song using the

method described in [10]. The boundary detection aids in the creation of feature vectors (A

histogram of state labels) used in the clustering part and the smoothing of the cluster indices.

The next step is to create a histogram of state labels for each grouping of dml beats. These

histogram vectors are then clustered in a semi-supervised framework using a few clustering

approaches available in literature.

8

Figure 1.1 The Master Block Diagram of the employed approach.

9

The cluster indices thus obtained correspond to the different sections in the song. The

indices obtained from each histogram can then be assigned to the respective individual beats

that made up each histogram, thereby obtaining the segment to which each beat belongs to.

The indices obtained usually have a little sporadic nature to them and can be smoothed using a

Commonest Filter approach and the information about the boundaries of the song.

1.3 Sample Input and Sample Output

The code of this project takes an audio file in the .WAV format as input. Another very

helpful input argument may be the number of segments the user would like the to split the song

into. Typically, the determination of the right number of clusters in the conventional k-means

kind of approach is a NP-hard problem. As noted in [8], it is not impractical to expect an

input about the number of segments from the user. The output is a sequence of start times and

end times for each segment accompanied with the segment label. The system’s output for the

segmentation of ’Creep’ by Radiohead is given below:

Start Time End Time Label

0.000000 11.152000 A

11.152000 53.136000 E

53.136000 65.600000 D

65.600000 86.592000 C

86.592000 107.584000 C

107.584000 122.016000 A

122.016000 143.008000 A

143.008000 164.000000 A

164.000000 175.808000 C

175.808000 191.552000 A

191.552000 205.984000 B

205.984000 226.976000 A

10

Chapter 2

Feature Extraction and State Labeling

2.1 The Chroma Feature Vector

The Chroma feature vector basically organizes the spectral information of the given audio

signal into 12 pitch class bins based on the semitones in Western-classical music. In musical

applications, and especially for the task of structural segmentation, it is more useful to compute

the Chroma feature for each frame of time of the audio signal. Hence, before one begins

computing the Chroma, one must first divide the audio signal into smaller frames.

2.1.1 Pre-Processing

I chose the duration of one beat of the song as the length of one frame. This can be done

by using a tempo estimation and beat detection algorithm. In this project, I have used the

tempo estimation algorithm developed in [11]. Once the tempo (beats per minute) is estimated,

the audio signal can be divided into n beats depending on the length of the audio signal and

it’s sampling rate. This is followed by the computation of the Discrete Fourier Transform for

each beat. This will result in n number of M -dimensional vectors, where M is the number

of frequency bins and each entry in a vector is the Fourier co-efficient of the corresponding

frequency. For musical applications, the typical choices for the M bins are logarithmically

spaced points from 20Hz to 20kHZ, which is the range of the frequencies a human being can

perceive.

11

2.1.2 Computing the Chroma Feature

The Chroma feature organizes the magnitudes (averaged over all octaves) of the co-efficients

in the DFT into frequency bins according to the semitones used in Western Music theory. In a

simplified manner, it can be said that the Chroma feature gives the relative amplitude of each

musical note in a given Audio signal.

Let’s consider the C note for example. The frequency of the C note in the first octave is

32.70Hz. It’s frequency in the second octave is 65.40Hz, in the third octave is 96.10Hz and

so on. The entry corresponding to this note in the Chroma vector will be the average of the

magnitudes of the corresponding frequencies in each octave. More specifically, it is the average

of the log-magnitudes, since the human ear perceives sound amplitudes logarithmically.

Let Sk be the set of all frequencies belonging to pitch-class k. Here, pitch class is analogous to

a note in music. Hence, if we are talking about the C note, Sc = {32.70, 65.40, 96.10, · · · }Hz

Let Aj(k) be the log-magnitude of the Fourier co-efficient of the jth element in Sk. Let Nk be

the cardinality of Sk. Then, the Chroma value ck for the pitch class k [12] is given by:

ck =
∑
j∈Sk

Aj(k)

Nk

(2.1)

Once the Chroma is extracted for each of the 12 pitch classes for each beat in the song, the

result is a n × 12 matrix, C that contains the sequence of the Chroma vectors of each beat of

the song.

2.2 State Labeling

As stated in section 1.2, I try to find an analog, using elementary music theory, of the states

generated by the Hidden Markov Models in [7] and posit that these states could be analogous

to a chord or representative of spectral uniqueness. Once the beats have been assigned these

state labels, similar state transitions should occur in similar segments of a song as shown in [7].

12

2.2.1 Estimating the Chord

In order to estimate the amount of presence of a chord in a beat, I computed the sum of the

Chroma values for each pitch class belonging to the triad of a chord. For example, if I want to

compute the presence of the C major chord in a beat, I would compute the sum of the Chroma

values of the C, E and G bins of the beat.

The triad that yields the maximum presence when computed as above comprises the chord

of the given beat. I then assigned a state number or state index to each chord depending on the

key of the given piece of music.

2.2.2 Elementary Approximation of the Key of the song

One can use already existing key-detection algorithms in order to compute the key of the

given piece of music. However, these algorithms are usually computationally expensive. I use

a simple approach to only approximate the key of the song using the chroma values for each

bin, again incorporating very elementary knowledge of music theory.

Every key in Western classical music is characterized by a set of seven pitch classes or

notes. Let Γv be set of pitch classes belonging to the key of v. Let ck(v) be the chroma value

of the kth pitch class in Γv. Then the key v can be estimated as:

v = argmaxv
∑
k∈Γv

ck(v) (2.2)

That is, the key of the music is the one whose corresponding set of pitch class profiles yields

the maximum sum of Chroma values. Again, this might not give the key very accurately; but

it does a decent job at approximating the key of the song to the nearest relative major/minor.

That is, if the song is in the key of C major, one could expect the above formulation to yield

a key of C major or A minor. However, this will not affect the state indexing of the chord and

consequently, the state labeling of the beats in any major way. This will be shown in the next

subsection.

13

Figure 2.1 A diagram illustrating the sequence of notes in the Circle of Fifths (taken from
http://www.evirtuoso.com).

2.2.3 State Indexing of the Chords and State Labeling of the Beats

By state indexing of a chord, I mean that I would like to assign a number (an integer from

1 to 24) to a chord (considering only the 12 major and the 12 minor chords). These numbers

can then be assigned as state labels to the beats depending on the chord with the maximum

presence in a given beat.

An easy way to index each chord would be to assign it a constant value that does not change

depending on the song. For example the A major chord could always be state 1, B major could

always be state 2 and so on. However, when these are assigned as state labels to the beats of the

song, it’s not trivial to detect any pattern in their transitions in order to figure out any similarity

or dissimilarity between the different sections of a song.

However, once the key of the song has been approximated, the chord that directly corre-

sponds to the key of the song can be indexed as state 12 or state 13 (the middle of 24), and all

the other chords indexed around it according to the circle of fifths (Figure 2.1). An illustration

of such a state indexing is shown in Table 2.1 and the resulting state labeling of the beats is

14

State Number Chord

1 G# major

2 F minor

3 D# major

4 C minor

5 A# major

6 G minor

7 F major

8 D minor

9 C major

10 A minor

11 G major

12 E minor

13 D major

14 B minor

15 A major

16 F# minor

17 E major

18 C# minor

19 B major

20 G# minor

21 F# major

22 D# minor

23 C# major

24 A# minor

Table 2.1 State numbers for chords belonging to the D major scale

shown. Figures 2.2 through 2.4 show that state indexing according to the circle of fifths yields

interpretive and useful results.

15

Time (beats)

0 50 100 150 200 250 300 350 400 450 500

S
ta

te
s

0

5

10

15

20

With Major and Minor chords as states

INTRO VERSE VERSE TRANSITION CHORUS VERSE TRANSITION CHORUS CHORUS CHORUS CHORUS
instru

Figure 2.2 State labeling of the beats in ’Wonderwall’ by Oasis. The similarity of state
transitions between the choruses and the verses is very evident.

Time (beats)

0 50 100 150 200

St
ate

s

0

5

10

15

20

With Major and Minor chords as states

INTRO VERSE VERSE VERSE VERSEBRIDGE BRIDGE OUTRO

Figure 2.3 State labeling of the beats in ’Misery’ by The Beatles.

16

T
im

e
 (

b
e

a
ts

)

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

States

05

1
0

1
5

2
0

IN

 V

E
R

S
E

 R

 V

E
R

S
E

 R

R

B

 S

O
L
O

 R

 V

E
R

S
E

R

 R

R

O

U
T

Fi
gu

re
2.

4
St

at
e

la
be

lin
g

of
th

e
be

at
s

in
’L

et
It

B
e’

by
Th

e
B

ea
tle

s.

17

Chapter 3

Boundary Detection

3.1 Preliminary Boundary Detection and Smoothing

The boundary detection approach used in this project was developed in [9]. I used the

Chroma feature computed in the previous chapter for this task. In this method, first, a self-

similarity matrix is computed for the sequence of the Chroma features for a given song. This

can be computed as follows:

S(i, j) = ρ(ci, cj), i, j = 1, 2, 3, ..., n (3.1)

where ρ(ci, cj) denotes the distance between the Chroma vectors for the ith and the jth beat.

A typical choice for ρ(., .) is the Euclidean distance.

Once the Self-similarity matrix is obtained, a novelty measure η(i) is computed for each

beat using the following:

η(i) =

kc/2∑
α=−kc/2

kc/2∑
β=−kc/2

Gkc(α, β)S(i+ α, i+ β) (3.2)

whereGkc is a symmetric Gaussian tapered checkerboard kernel of dimensions kc×kc., the

details of which are given in [9]. For the purpose of this project, I chose kc = 96 and a Gaussian

tapering with standard deviation kc/6, which in this case, turns out to be 16. The choice of kc

was made empirically.

When η(i) is computed as above, it could yield some noisy results and these can be made

smoother using a moving average filter operation. I chose a window length of 8 beats for the

implementation of the moving average filter on the sequence of the ηis.

18

Figure 3.1 The Gaussian tapered Checkerboard Kernel.

Even after the smoothing, the number of boundaries detected could be very high. In order

to combat this, a two-step process explained below can be used.

3.2 Temporal and Amplitude Thresholds to reduce the number of detected
boundaries

One of the ways in which the number of boundaries can be reduced is by setting a temporal

threshold tml in which two boundaries cannot occur. That is, if two of the detected boundaries

are very close to each other, one can surely say from empirical evidence that these boundaries

might not necessarily indicate two different sections. I chose tml = 16 beats for the temporal

19

threshold between which two boundaries cannot occur.

One can further reduce the number of boundaries by comparing the magnitude of the nov-

elty measure for each boundary with the magnitudes of the novelty measures of the other

boundaries in the song. That is, one can choose a certain value for threshold magnitude ηthresh

and any boundaries that have a η(i) value lesser than ηthresh can be deleted from the set of all

the boundaries. I chose the following value of ηthresh:

ηthresh = η̄ − ση(nb) (3.3)

∀nb ∈ B where B is the set of all the boundaries obtained after setting the temporal thresh-

olds, η̄ is the mean of the magnitudes of the novelty measures of the boundaries in B and ση(nb)

is their standard deviation. I also tried using the difference between the mean and the variance

of the η(nb) in order to impose a tighter threshold, but this leads to a loss of some important

boundaries towards the end of the song. In the song Wonderwall by Oasis, for example, the

tighter threshold leads to a loss in the boundary towards the end of the song where it transi-

tions from a vocal chorus to an instrumental chorus, a transition which is noted in the reference

segmentaions.

The resulting boundaries detected for a few of the songs in the data set along with the

ground truth reference boundaries are shown in the figures 3.2 through 3.4. As can be seen

from these figures, there are boundaries detected by the algorithm that are not present in the

ground truth data, but the ones that are present, are very close to and many times, at the same

locations as the ones detected by the algorithm.

In general, the method described above detects an average of 33% more boundaries as

compared to the ground truth number of boundaries. This, however, does not seem to adversely

affect the final segmentations when compared to the ground truth.

20

Figure 3.2 The peaks marked with a ’*’ are the boundaries located by the Algorithm. The
green dotted lines indicate the ground truth boundaries

21

Figure 3.3

22

Figure 3.4

23

Chapter 4

Clustering

This chapter deals with the clustering approaches employed in the experimentation of the

project. Before setting up the clustering task, a sequence of histograms of the state labels in

each beat is computed and these histograms are then clustered using four clustering models.

4.1 Histogram of States

I constructed a histogram of the states present in a grouping of dml beats. In [7], these

histograms are created and are then clustered using temporal constraints. Constrained cluster-

ing, as developed in [13], uses some background knowledge of the points to be clustered and

imposes a set of must-link and cannot-link constraints, while performing the clustering. The

background knowledge is incorporated as a matrix C of binary constraints, where C(i, j) = 1

if the points i and j must be grouped in the same cluster and C(i, j) = 0 if the two points

must lie in separate clusters. The authors of [7] use temporal continuity as a set of must-link

constraints.

In this project, I chose a more direct, almost brute-force approach towards imposing these

constraints and instead of using a matrix of binary constraints in the final clustering module,

I used the location of the boundaries while creating the histograms and then clustered the his-

tograms without any constraints.

The histograms were created using the following steps and pseudo-code:

24

1. Initialize the index H denote the matrix containing the sequence of the histogram of

states and let bk be the location of the kth detected boundary and let b0 = 0. Let nb be

the total number of detected boundaries. Let X be the n × 24 matrix of state labels for

each beat obtained from the state labeling in 2.2.3, where n is the number of beats in the

song.

2. for k = 1 : (nb − 1)

for i = bk + 1 : bk+1 − dml
for j = 1 : 24

H(i, j) =
∑i+dml

l=i X(i, j)

end

end

end

3. for i = (bnb
+ 1) : (n− dml)

H(ij) =
∑i+dml

l=i X(i, j)

end

The above process will yield a m× 24 matrix H of the histogram of states with m < n.

Thus, each histogram only contains the total number occurences of each state within win-

dows of length dml that only lie within a given temporal region specified by the boundaries

enclosing the region. This incorporates the temporal constraints of the data while creating the

histograms itself. These histograms are then used for clustering.

4.2 Clustering the Data

The sequence of histograms obtained in the above section were clustered using the three

different approaches:

1. k-means clustering

25

2. Hierarchical Agglomerative Clustering (HAC)

3. EP-means : A modified version of k-means that uses the Earth Mover’s Distance [10]

Of these, the k-means and the agglomerative clustering approaches are well known, long-

existing clustering algorithms in Machine Learning. However, the EP-means clustering algo-

rithm is a newer algorithm that incorporates the Earth Mover’s Distance to cluster probability

distributions.

4.2.1 The Earth Mover’s Distance (EMD)

The Earth Mover’s Distance is a metric to measure the distance between two Probability

Distributions. Informally, if the distributions are interpreted as follows:

Given a certain amount of dirt (earth), one can pile up the dirt over the region D in many

different ways. The EMD between any two such piles is the minimum cost of turning one pile

of dirt into the other; where the cost is assumed to be amount of dirt moved times the distance

by which it is moved. Hence the name Earth Mover’s Distance.

The histograms of states obtained in 4.1 can be normalized to reflect the probability of

the occurrence of each state in a given window of beats. Hence, clustering these histograms

using the Earth Mover’s distance would entail a better notion of distance between them in the

clustering process.

For one dimensional distributions like the histograms that have been obtained, the compu-

tation of the Earth Mover’s Distance has a simple closed form solution [14]:

ρemd(hi, hj) =
∑
p

δi,j(p) (4.1)

where hi and hj are p-dimensional histograms and

δi,j = |cdf(hi)− cdf(hj)|

is also a p-dimensional vector and cdf(h) denotes the vector containing the cumulative distri-

bution of h.

26

4.2.2 The EP-means Clustering Algorithm

This algorithm can be thought of as a version of the k-means algorithm. However, it should

be noted that the k-means algorithm has been traditionally defined using the squared Euclidean

distance metric and hence, when updating the centers at each iteration so that the sum of the

within cluster point-to-center distances is minimized, the centers turn out to be the means of

the points in the respective clusters. Hence, the name k-means.

The EP-means algorithm [10] follows a similar approach, that is:

1. Choose an initial number of cluster centers, then assign points in the feature space to the

nearest cluster using the distance between the points and the cluster centers.

2. Update the cluster centers according to the points assigned.

3. Assign the points to the nearest cluster using the new cluster centers

4. Repeat steps 2 and 3 till convergence.

In this project, I have used the k-means++ technique of choosing the initial cluster centers,

but by computing the EMD instead of the squared Euclidean distance. Once the initial centers

are chose, the histograms are assigned to the cluster containing the nearest cluster center.

Now, in the next stage, which is the updating of the cluster centers, one cannot use the

mean of the existing points in a cluster as the new cluster center since that minimizes the within

cluster distance only if we are using the squared Euclidean distance. The steps for updating the

center for the kth cluster are listed below.

Let F (x) denote the cumulative distribution value for bin x and Fhi(x) denote the cumulative

distribution value for bin x of the histogram hi. Let Pk be the set of all the points in the cluster

k. Then, the center of cluster k can be updated as follows:

1. Start with F (x) = 0

2. Find x̂0 = mean{x|Fhi(x) ≥ 0} for hi ∈ Pk. x̂0 will be the first bin of the cluster center

with cumulative distribution value 0.

27

3. Find α1 = min{Fhi(x)|Fhi(x) > 0} for hi ∈ Pk

4. Find x̂1 = mean{x|Fhi(x) ≥ α1} for hi ∈ Pk. x̂1 will be the second bin of the center

with cumulative distribution value equal to α1

5. At the tth step, find αt = min{Fhi(x)|Fhi(x) > αt−1} for hi ∈ Pk and

find x̂t = mean{x|Fhi(x) ≥ αt}. This will be the tth bin of the center with cumulative

distribution value αt

6. Repeat step 5 till αt = 1.

It is very important that the histograms be normalized so that the value in each bin is in

[0,1] to reflect a probability distribution. Once the centers are computed, the points can be

assigned to their nearest clusters.

4.2.3 Sub-Optimality of the EP-means Algorithm for the given case

In [10], the authors have developed the EP-means algorithm for Continuous Valued, one-

dimensional probability distributions. However, in this project, I have tried to extrapolate the

idea to discrete set of probability distributions that are the histograms of states. This yields

sub-optimal, particularly noisy results, mainly due to non-discrete values that can be obtained

for the αts in the computation of the centroids because these are averages. Rounding them off

empirically yields noisy results as illustrated in 4.1

Still, it can be seen from the clustering output of the EP-means algorithm that, if smoothed

efficiently, it could replicate the k-means and the HAC outputs very closely.

28

Figure 4.1 The smoothed versions of the cluster indices for k-means and HAC undergo
similar transitions (similar structure). For the EP-means clustering, there is a huge presence of
cluster number 3. Smoothing this would lead to most of the beats in the song being labeled as

belonging to segment 3. (The x-axis contains the beat number of the song)

29

Chapter 5

Testing and Evaluation

5.1 Data Set

I used the publicly available ground truth segmentations of Beatles’ songs available 1 under

the Creative Commons Attribution-Noncommercial-Share Alike 3.0 License, that were first

created by Allan Pollack in his ”Notes On...” series and have been corrected at the Audio Re-

search Group, Institute of Signal Processing at the Tampere University of Finland and Pompeu

Fabra University simultaneously. I also tested the algorithm on a few non-Beatles songs that

were used for testing in [7], the ground truth segmentations 2 for which are also available. In

all, the system was tested on a total of 70 songs for whom the ground truths were available in

the aforementioned data sets.

5.2 Evaluation Metric

I used the metric proposed in [7], called the Pairwise F-measure, sometimes abbreviated as

pwf or simply, F . This metric has been most widely used in the evaluation of the structural

segmentation task. The metric is computed as follows:

Let Ps be the set of similarly labeled pairs of beats in a given song according to the artificial

system. Let Pr be the set of similarly labeled pairs of beats in a given song according to the

reference segmentations. Define two quantities, precision and recall, as follows:

precision =
|Ps ∩ Pr|
|Ps|

1http://www.cs.tut.fi/sgn/arg/paulus/structure.html
2http://www.elec.qmul.ac.uk/digitalmusic/downloads

30

recall =
|Ps ∩ Pr|
|Pr|

Then the pwf is given as:

pwf =
2× precision× recall
precision+ recall

(5.1)

Due to the above formulation, 0 ≤ pwf ≤ 1, with a larger value of pwf implying a better

segmentation.

5.3 Results

As seen in Section 4.2.3, the use of the EP-means algorithm for discrete histograms could

yield results that are very sub-optimal. Hence, I tried the conventional k-means and Hierar-

chical Aglomerative Clustering approaches to try to cluster the histograms created in Section

4.1. I used the number of total segments as input from the ground truth data and computed

the average pwf for each clustering method. These results are shown in Table 5.1. I have also

provided the average of the pwf obtained for the 25 songs on whom the algorithm performed

the best in Table 5.2 and the best case results in Table 5.3. One notable thing that can be seen

from the output for the tracks which yield low pwf values is that; since the features are chords,

a song containing vocals that sound identical to the chord on which they are set will usually

cause the deletion of one or more segments in the final output even though the actual number

of segments are fed in the input. This defect, however, is not pronounced in most of the songs.

It should be noted that songs like ”Dig It” by The Beatles yield better results (pwf of 0.87 for

both k-means and HAC) than the ones mentioned in Table 5.3, but were not considered as be-

ing the best results due to the simplistic nature and short duration of the songs (usually just a

prolonged segment with a small, slightly different segment in the end).

31

Clustering Method Average Precision Average Recall Average pwf

k-means 0.44 0.42 0.51

HAC 0.49 0.57 0.47

Table 5.1 Average of the Evaluation metrics for all the 70 songs

Clustering Method Average Precision Average Recall Average pwf

k-means 0.48 0.40 0.63

HAC 0.58 0.59 0.59

Table 5.2 Average Evaluation metrics for the 25 songs with best results

Clustering Method Precision Recall pwf Song Title

k-means 0.56 0.44 0.75 Twist and Shout-

The Beatles

HAC 0.70 0.62 0.79 There’s a Place-

The Beatles

Table 5.3 Evaluation metrics for the songs with the best results

32

Chapter 6

Conclusion and Possible Future Development

The results obtained for the best performing songs and the 25 best performing songs indi-

cate that the features used and the constraints imposed during the creation of feature vectors

could provide some insight to existing models and scope for development of structural seg-

mentation models:

1. (a) A lot of existing literature and methods have developed and used the idea that in

order to be able to develop a notion of difference between different segments, the

transition of the states to which the frames in a song belong to and the probability

of the occurrence of these states in a given window of frames can be taken into

consideration and in fact, gives fruitful results.

By representing these states-which are generally generated using Hidden Markov

Models-as elementary versions of a chord, and seeing that they do not perform very

poorly, useful insight can be gained into the physical meaning of these states.A

way of being able to directly compare the performance of the chord states with the

HMM states in the same setting could help determine the strength of the aforemen-

tioned claim.

(b) Better chord detection and key detection techniques can be used in the initial phase

of the module to obtain better representations of the sequence of states; thereby

leading to better clustering.

2. Constrained clustering is a type of semi-supervised learning that has many practical uses.

The technique of incorporating the constraints while creating the feature vector, as has

33

been done in this project, and then clustering these features in an unsupervised setting can

be developed and investigated further to possibly make the clustering and segmentation

better.

3. The development of a more robust, discrete version of the EP-means algorithm used in

this project can enable the use of the Earth Mover’s Distance as a distance metric for the

clustering of discrete histograms, possibly aiding in the performance of models that use

histogram clustering.

34

LIST OF REFERENCES

[1] N. C. Maddage, C. Xu, M. S. Kankanhalli, and X. Shao, “Content-based music structure
analysis with applications to music semantics understanding,” in Proceedings of the 12th
annual ACM international conference on Multimedia. ACM, 2004, pp. 112–119.

[2] L. Lu, M. Wang, and H.-J. Zhang, “Repeating pattern discovery and structure analysis
from acoustic music data,” in Proceedings of the 6th ACM SIGMM international work-
shop on Multimedia information retrieval. ACM, 2004, pp. 275–282.

[3] M. Goto, “A chorus-section detecting method for musical audio signals,” in Acoustics,
Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). 2003 IEEE Interna-
tional Conference on, vol. 5. IEEE, 2003, pp. V–437.

[4] K. Johansson, “The harmonic language of the beatles,” STM-Online, vol. 2, no. 1999,
1999.

[5] R. W. J. Bello, “Identifying repeated patterns in music using sparse convolutive non-
negative matrix factorization,” 2010.

[6] R. Chen and M. Li, “Music structural segmentation by combining harmonic
and timbral information.” ISMIR, pp. 477–482, 2011. [Online]. Available: http:
//ismir2011.ismir.net/papers/PS4-1.pdf

[7] M. Levy and M. Sandler, “Structural segmentation of musical audio by constrained clus-
tering,” IEEE Transactions on Audio, Speech and Language Processing, vol. 16, no. 2,
pp. 318–326, 2008.

[8] E. Peiszer, T. Lidy, and A. Rauber, “Automatic audio segmentation: Segment boundary
and structure detection in popular music,” Proc. of LSAS, 2008.

[9] J. Foote, “Automatic audio segmentation using a measure of audio novelty,” in Multime-
dia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on, vol. 1. IEEE,
2000, pp. 452–455.

[10] K. Henderson, B. Gallagher, and T. Eliassi-rad, “Ep-means : An efficient nonparametric
clustering of empirical probability distributions,” 2015.

35

[11] D. P. W. Ellis, “Beat tracking by dynamic programming,” Journal of New Music Research,
vol. 36, no. 1, pp. 51–60, 2007.

[12] T. Giannakopoulos and A. Pikrakis, Introduction to Audio Analysis: A MATLAB R© Ap-
proach. Academic Press, 2014.

[13] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al., “Constrained k-means clustering
with background knowledge,” in ICML, vol. 1, 2001, pp. 577–584.

[14] Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with applications to
image databases,” in Computer Vision, 1998. Sixth International Conference on. IEEE,
1998, pp. 59–66.

