Congruence 1. Find an integer x such that $4^{128} \equiv x \bmod 9$ and $0 \leq x \leq 100$.

If we begin with $4 \equiv 4 \bmod 9$ and also, $4^{2} \equiv 7 \bmod 9$, then by Proposition 21, we can say:

$$
4^{3} \equiv 28 \bmod 9(\text { where } 1 \text { also works for } 28)
$$

If we repeat the original process with 4^{3} until we get to 4^{126}, we can then utilize the 4 and 4^{2} values respectively:

$$
4^{127} \equiv 4 \bmod 9
$$

and finally

$$
4^{128} \equiv 7 \bmod 9
$$

Congruence 2. Find an integer y such that $3^{128} \equiv y \bmod 4$ and $0 \leq y \leq 3$.

If we begin with

$$
\begin{aligned}
3 & \equiv 3 \bmod 4, \\
3^{2} & \equiv 1 \bmod 4, \\
3^{3} & \equiv 3 \bmod 4, \\
3^{4} & \equiv 1 \bmod 4,
\end{aligned}
$$

then by Proposition 21, we can say:

$$
3^{6} \equiv 1 \bmod 4,
$$

Considering 128 is an even integer and $3^{2} \equiv 1 \bmod 4$, we can do this until we get to $3^{128} \equiv 1 \bmod 4$.

Congruence 3. For each of the following congruence's, find integers x_{i} such that $0 \leq x_{i} \leq 6$ that satisfy the congruence.

