Name: Marshal Thrasher

Congruence 1. Find an integer x such that $4^{128} \equiv x \mod 9$ and $0 \le x \le 100$.

If we begin with $4 \equiv 4 \mod 9$ and also, $4^2 \equiv 7 \mod 9$, then by Proposition 21, we can say:

 $4^3 \equiv 28 \mod 9$ (where 1 also works for 28)

If we repeat the original process with 4^3 until we get to 4^{126} , we can then utilize the 4 and 4^2 values respectively:

$$4^{127} \equiv 4 \mod 9$$

and finally

$$4^{128} \equiv 7 \ mod9.$$

Congruence 2. Find an integer y such that $3^{128} \equiv y \mod 4$ and $0 \le y \le 3$.

If we begin with

$$\begin{array}{l} 3\equiv 3 \mod 4,\\ 3^2\equiv 1 \mod 4,\\ 3^3\equiv 3 \mod 4,\\ 3^4\equiv 1 \mod 4, \end{array}$$

then by Proposition 21, we can say:

$$3^6 \equiv 1 \mod 4$$
,

Considering 128 is an even integer and $3^2 \equiv 1 \mod 4$, we can do this until we get to $3^{128} \equiv 1 \mod 4$.

Congruence 3. For each of the following congruence's, find integers x_i such that $0 \le x_i \le 6$ that satisfy the congruence.