High Level Synthesis

Scott Walter
April 29, 2014

Contents
1 Executive Summary

2 Defining the Hardware
2.1 Rules. . . . . . . e
2.2 The Process . . . . . . . . . . . . e

3 Defining the Al
3.1 Alterms . . . . . . . . .
3.2 Assumptions . . ...
3.3 Comparing Algorithms . . . . . . ... ... ... ... ...,
331 A% e
3.3.2 Depth First Search . . . . . ... ... ... ........
3.3.3 Hill Climbing with Restart . . . . ... ... ... ....

4 Conclusion



1 Executive Summary

When you examine the inside components of a computer you will always find a
motherboard. On that motherboard you will see all sorts of intergrated circuits,
wires, and other components. One might ask: ”"who placed all of these compo-
nents on this board and who planned it out?” The placing of wire and compo-
nent is done by machines, but the planning is carried out in a process called
synthesis. Essentially, to create and design hardware one must first program
a design in a hardware description language (HDL). Two of the most common
types of HDLs include Verilog and VHDL. Once the programming portion is
complete, i.e. you have written code that realizes the type of design you want
to implement, the synthesis comes next. In this process a synthesizer will check
the code’s syntax and then begin organizing components. The way in which it
does this is by following a set of user defined rules, often called constraints, and
implementing a search algorithm. For example, say you want to create a one
bit binary adder. The inputs to this system are the two bits you're adding, and
a carry in. The outputs to this system are the sum of the two bits, and a carry
out. What a search algorith will do in this problem is ingest your code which
may look something like this:

output s, cout;
input a,b,cin;

assign s = a ~ b;
assign cout = a & b;

and produce some kind of real tangible hardware based on your code. Note,
the purpose of the code is not to understand it, but just merely to see what
the synthesizer is handed to pick logic. Now, what the synthesizer must do is
select from a library of logical components, i.e. AND, OR, NOR, etc. and place
them in a way on a logic board that realizes what the programmer wanted to
do (in this case, implement a one bit binary adder), and additionally follow any
rules that the programmer laid out which will be explained later. The purpose
of this paper is to examine which particular algorithm is best at traversing the
library of components available to our synthesizer to find the best design for
our program.



2 Defining the Hardware

As aformentioned, one of synthesis’ jobs is to literally place the components
found in a design in a specific layout. It is the job of a sorting algorithm to take
a component and place it somewhere in the schematic so it follows some user
constraints, and produces the same logical output that is expected, and ensures
the system is fast enough. This next section will better define what some of
these rules are.

2.1 Rules

1. User constaints are typically found in a file that specifies what inputs and
outputs map to the actual device you are programming. For instance,
say we are programming our Verilog code to a device such as an field
programmable gate array (FPGA). Going back to our single bit binary
adder, we have three inputs and two outputs. Those three inputs and two
ouputs need to be mapped to some physical spot on the FPGA such as a
pin, or a push button. Additionally, the outputs also need to be defined
in the same way. This is important for us because it will determine where
certain wires and components must go.

2. When you synthesize something in verilog code you specificy a minimum
timing allowed. This refers to the phrase: "My design meets timing.”
This relates to the critical path in the logic that is formed. Essentially, you
specify that the longest logical path found in your schematic is only allowed
to take a certain amount of time to resolve. This type of requirement might
cause the algorithm to shift wires around skipping certain components, or
use different components that have a faster speed but may take up more
space as a possible trade off.

3. There is a space requirement as well. A programmer can specify how large
a design may be. As aforementioned, shrinking the size of your schematic
can have other effects on the circuit such as increasing the critical path’s
timing.

4. Additionally, a synthesizer will take your code and create the logical
equivalent and then optimize it. It does this by implementing large Kar-
naugh maps to realize your equation, and then it optimizes it using a
Quine-McCluskey methodology. For the purpose of this paper, it is not
important that you understand these concepts.

2.2 The Process

Considering all of these rules there is a very specific process that a synthesizer
may follow. In this paper I will be discussing the process outlined in Xilinx’s In-
tegrated Software Environment which is a very powerful integrated development
environment, but the only portion we are concerned with is the synthesizer.

1. The HDL Parsing phase is first. In this phase, the synthesis tool checks
your code for any syntactical errors



2. Next is the HDL Synthesis phase. In this phase we do multiple things.
First we parse the code for any kind of inferred logic such as multiplexors,
RAM, adders, subtractors, etc. This are items we already have prede-
fined layouts for and just quickly implement them without having to sort
through all of our logic. We then parse the code for any inferred finite
state machines and create them in a style in accordance with a user defined
setting. For instance, in Xilinx’s ISE there is a compile time variable you
can set that specifies how finite state machines are realized. This variable
is ”fsm-encoding” and an example of a possible option is ”one-hot” which
refers to the one hot coding scheme where each and every state is given a
flip flop and only one flip flop is active at a time. Finally, in this phase
user constraints are considered. These constraints effect where certain
wires are laid and through which logic they propogate.

3. Finally, optimization occurs. This step is where the synthesizer takes the
proposed schematic made in the last step and optimizes its’ logic so that
it not only meets timing and size requirements, but also uses optimized
logic. Note, it is possible to have specifications that are impossible to
meet. When this is done, an error is returned during synthesis. Also note,
this particular phase is not important to the search algorithm we decide
to use, but is include for competion’s sake.

3 Defining the Al

In this section we will discuss which algorithms are best to use for the problem
at hand. The problem being: "How do I best place hardware in a schematic so
that it is optimized, follows the given rules, realizes what I had programmed,
and produces the schematic in a timely matter.” This problem is very similar
to the einstein’s puzzle in that you have several rules that you need to follow
and no clear solution in the beginning. We will discuss the validity of three
algorithms for this job. We will look at A* Depth First Search, and finally
Hill Climbing with Restart. Before discussing the merits of search algorithms,
we have to define the problem in Al terms so that we can easily compare each
search algorithm.

3.1 Al terms

1. Goal Evaluation: we will know we have reached our goal when we’ve placed
all the necessary hardware to realize the logic we put forth in our code,
and that hardware passes all user, timing, and size constraints, or returns
an error stating that it is not possible.

2. Cost: Cost is a variable amount. As more items are placed, complexity
increases, and difficulty of rewiring when components are moved increases.
Therefore, as more items are placed, cost increases. Additionally, placing
components with more pins (higher complexity) is more costly. This will
be defined more clearly later on.

3. Determinism: The next state of the schematic is completely dependant on
the current state and the change this state makes to it.



10.

11.

3.2

Dynamic: The environment is dynamic because it is constantly placing
hardware in a schematic and removing it based on initial designs and
optimization aftewards.

Observation: This problem is fully obeservable, i.e. you are able to see
the complete state after each and every action made.

Time: This problem is discrete because there is only a finite amount of
hardware configurations that can be made.

State Space Representation: The state space will be represented with a
graph.

Dead Ends: Dead Ends do exist in this problem. For example, imagine
we’ve placed 10/12 components and the last one we placed breaks a certain
constraint and we had no other options with our last placed component.
We will need to backtrack and find a different configuration that allows
that component to be placed in a different way so that it does not break
any constraints. This backtracking eliminates the possibility for a dead
end and a search algorithm stalling. For search algorithms such as hill
climbing algorithms, we will utilize ”random restart” to avoid dead ends.

Solution Depth: The solution depth is the same as the maximum depth.
Once we have placed all the components necesary to realiz the logic we
have programmed, and it follows the rules, we are done. However, every
single component needs to be placed for this to occur.

Relative Error Cost: Not all errors have the same cost in this problem.
For instance, imagine an intergrated circuit with 32 pins on it and then
an 8 pin device. If you incorrectly place the 32 pin chip, you will need to
rewire all of the pins used by that chip once it has been reposititioned. In
this case, it would take longer to reposition the 32 pin chip as opposed to
the 8 pin chip. Thus, devices with a higher pin count are more costly.

Run Time Performance: The time it takes to come up with a solution is
important. A user does not want to be waiting multiple days to produce
a schematic for a design. The algorithm should be able to come up with
a solution in a few minutes/hours depending on design size.

Assumptions
Component Amount: We will be placing 12 components on a schematic.

Schematic Layout: The schematic layout will be a 3x4 grid where each
square is a slot that a single component can occupy.

Unique Slots: Each and every piece of hardware can be installed into
every single slot, provided it follows the given constraints. There are no
duplicate components in a design.

There are 12 components to realize your schematic. Each component is
unique and can only be used once. This means that the depth of the tree
is 12 and the branching factor starts out at 12 and decreases by one each
time we go one level deeper in the tree.



5. To represent the increasing complexity of the hardware, as we place com-
ponents and iterate through our graph at each depth, the amount of time
it takes to place a component is increased by 10 ns. So, initally, the first
component requires 10 ns, then the second requires 20 ns and so forth.

6. Here is an example of this grid:

-

-

-

3.3 Comparing Algorithms

In this sub section we will compare the three given algorithms for the problem
at hand.

3.3.1 A*

A* is a heuristic assisted search algorithm. Omne of the main necessities of a
heuristic assisted search algorithm is to know where the solution is in a given
state space. The state space in this case is a graph. Unfortunately for A*
the goal node(s) is not known. This, however, does not completely count A*
out of the race for planning out the schematic during synthesis. A* has two
components that make up how it makes decisions, i.e. which node to expand
next. It bases its’ decisions off of a heurtistic cost, and an actual cost. In our
case, the actual cost for each node increases as we get deeper in the tree, and
there is no heuristic cost known because the goal node is not known.

Essentially, A* starts at a given state (no hardware placed) and has to do two
things. It has to pick which component to place and where to place it. This is
done simply by constructing a list of components, our aforementioned library



of logic, and ordering it by complexity. The synthesis tool wants to place the
most complex item last. You might refer to this implementation as LCV or least
constraining value. This is a constraint satisfaction feature, and is relevant to
this search algorithm. The reason for ordering it this way was mentioned in
section 2.2 under the ”Relative Error Cost” definition. Simply put, you want to
place the most complex items last because if your algorithm ever needs to back
track before getting to the end (where your most complex items are) you will
need to uproot less complex circuit components which will cause less ”collateral
damage” if there are lower pin count items as opposed to higher pin count items.
After that list is sorted, you pick the first item (least complex), and place it in
any slot and then you goal and rule evaluate after every component is placed.
If a rule is broken, you revert the previously made change and expand the next
node in your open list.
If there is no heuristic cost to measure, A* operates just like Uniform Cost
Search. This search algorithm organizes which node to expand in its’ open list
based purely on actual cost.
This solution is complete and it has a worst and best case performance of O((b—
n)¢/¢)[1] nodes searched where n refers to whatever level of the tree we are in, C
refers to the optimal solution, and e refers to the cost of the first device placed,
in our case, the lowest costing node. In this scenario, C* will equate to 780ns.
This is the value of the time it takes to find the solution with no back tracking.
The math to support this is in the DFS analysis. ”e” then is equal to 10ns,
meaning that every subsequent node placement costs less than 10 ns. With a
variable branching factor, it is difficult to realize how much time we will spend
at a best case and worst cast scenario searching with this particular algorithm.
So, instead of usign the complexity as b-n, we will just simply use the average
value that that equates to. So, if b-n can be equal to 12-1, 12-2, 12-3, etc.,
its” average value is 5.5. Additionally, it is difficult to account for the variable
complexity of placing components, so we will just use the average value of 60 ns.
So, the average compelixty, subsequently the best and worst case compelixty for
A* equates to:

(5.578) % 60 = 35.73s

3.3.2 Depth First Search

Depth first search expands every node it visits and selects the first child node of
that parent node and expands it continuing on until it hits a dead end. It then
iterates back to the previous parent node it last visited that had another option
and traverses down that branch in the same way. This algorithm will search all
of nodes in the tree as a worst case scenario. It has a best case scenario of d.
This is the case where DF'S finds the solution on the first branch that it iterates
through to the bottom. The best case scenario is equated by:

10 4+ 20 + 30 + 40 4 50 + 60 + 70 4+ 80 + 90 + 100 + 110 + 120 So, it has a

best case search time of 780ns, and a worst case search time of:

i(lz 1) = (12 % 1)(10) 4 (12 % 2)(20) + (12 * 3)(30) + ...

which equates to43.68ms. This solution is also complete. It will never return
failure unless the user specified settings are impossible to meet.



3.3.3 Hill Climbing with Restart

This search algorithm is a form of hill climbing. In this problem, moving up the
hill is placing a component that follows the rules. The ”restart” metric refers
to plateaus within the graph. When the algorithm has struck a local maxima,
i.e. no move it makes moves it uphill and it has not yet reached the goal (all
12 components placed while following the rules) it will restart all over again.
Essentially, the purpose of the algorithm is to store the ”score” it got on each
successive attempt and every time it scores ”higher” than the last iteration,
the new value replaces the high score. These intermediate values are of no
value to us because we have either found our solution or have not at all in this
application. We can modify this algorithm to never store intermediate values
and stop only when all 12 components have been placed and follow the rules.
To compare this to the other algorithms some additional assumption is required:

Sucess Rate | Average Steps to Win | Average Steps to Fail
20% 5 5

On every single trial there is a 20% success rate. The amount of average
iterations it takes to fail and succeed is the same, 5. This means that this
algorithm will need to on average run 5 times in order to guarantee 100% success.
The worst case scenario is that it fails on the first four trials and succeeds on the
fifth. The best case scenario is that is suceeds on the first trial. The complexity
of hill climbing is O(d * (b — n)) [2] where d is the depth, b is the branching
factor, and n is which level in the tree we are. In order to equate the best and
worst case performance we need to understand how much time a failure takes
and how much time a success takes. A failure, on average, requires 5 steps. This
means that a failed trial equates to:

10(12 % (12 — 1)) + 20(12 % (12 — 2)) + 30(12 % (12 — 3)) = 6.69ms
A successful trial is simply this equation expanded out to the 12th value of n. If
the worst case trial on average has 4 failures and then a success, then the time
it requires to find a solution in the worst case trial is equal to:

6.69 * 4 + 34.32 = 61.08ms
The best case is simply:
34.32ms

4 Conclusion

When choosing the best algorithm for this particular job one must consider the
average amount of time spent searching, and the completeness of the algorithm.
In all three searches, our algorithms are complete given the assumptions are
true. This means, that the only metric we care about is time spent searching
on average. To review, based on assumption, this value takes into consideration
the amount of nodes searched, and which nodes those were in the tree (later
in the tree meaning higher complexity) and showcases the best case and worst
case scenario of time spent searching these nodes.



Algorithm Best Case Search Time | Worst Case Search Time
A* 35.73 s 35.73 s
DFS 780 ns 43.68 ms
Hill Climbing 34.32 ms 61.08 ms

Based on the the chart, A* is completely eliminated from being chosen as a pos-
sibility. However, the other two remaining algorithms are still competing. The
next important feature to analyze would be how often DFS and Hill Climbing
operates at its’ best or worst case scenario, or in other words, its’ average case
search time. Since the Hill Climbing values already consider how frequently
successes and failures occur, all we need to do is average our two values to find
the average time spent searching which is 47.7 ms. We will assume the same
for DFS. The reason we do this is because DFS can find a solution in the first
branch it iterates through and the last, and every single branch in between.
Averaging the two values at 50% accounts for all of the positions where DFS
might find a solution. This average case value is 22.23 ms which for our algo-
rithms, is the best search time meaning that DFS should be chosen for the task
of organizing hardware during synthesis.



References

[1] ”Uniform-cost Search.” Wikipedia. Wikimedia Foundation, 04 Feb. 2014.
Web. 28 Apr. 2014.

[2] 7 Algorithms & Complexity” Nicolas Stroppa Dublin City University. 2006-
2007, 21 Nov. 2006. Web. 28 Apr. 2014.

10



