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Abstract—Image reconstruction is observed to be one of the
most common problem because of it’s large data movement and
non-trivial data dependencies. In the past, these problems were
tackled by many high performance hardware such as FPGAs and
GPGPUs. This also reflects the investemts to be made in these
supercomputers for real time reconstruction of clinically com-
puted tomography (CT) applications. Medical imaging systems
are employing high performance computing (HPC) technology
to meet their time constraints. This paper presents different
optimizations to the volume reconstruction and implement it on
a commodity hardware such as x86 based multicore system. This
paper chooses to perform its implementaion on Intel Xeon X5365
multicore processor. We perform different levels of parallelization
and analyse each of them and report their results with respect
to serial implementation. The objective of this paper is to
understand the constraints of volume reconstruction in multicore
architecture and optimize them while preserving the quality of
the reconstructed image.

I. INTRODUCTION AND RELATED WORK

Computed tomography (CT) is an Imaging procedure that
is used to generate a three-dimensional image of the inside of
an object, allowing the user to see what is inside it without
cutting it open. This is a technology that uses a large series of
two-dimensional radiographic images taken around a single
axis of rotation to produce tomographic images of specific
areas of the scanned object. The usage of CT has gone
beyond its classical application in clinical environments and
expanded its horizons in industrial CT’s such as nondestructive
materials testing and imaging of archeological contents like
sarcophagi. The typical clinical workflow requires high-speed
reconstruction in order to avoid interruption to patient’s
treatment. From the physician’s perspective, it is expected
that the computation of reconstructed volume from a large
set of acquired two-dimensional X-ray projections terminates
roughly at the end of the scanning period ensuring no
additional delay in the procedure. Volume data set acquired
after post processing is required to be available for analysis
by the physician immediately after the scan. This sets a
constraint for maximum reconstruction time to allow for
real-time processing of the entire algorithm.

The volume reconstruction scheme is a key component of
modern CT systems and is compute-intensive. The typical
approach to meet real time constraints is to utilize special-
hardware such as field programmable gate arrays (FPGAs)
[4]. Integrating these types of non-standard hardware into

Figure 1: C-arm system.[8]

commercial CT systems adds considerable costs in terms of
both hardware and software development. Also adding to the
system’s complexity.

With recent progress in very-large-scale integration (VLSI)
design which are driven by Moore’s law gives the potential
to meet requested CT time constraints. The development in
microprocessor consists of many independent compute cores
that has the capabilities to execute multiple tasks in parallel.
These processors are commonly referred to as multi-core or
many-core CPUs.

The volume reconstruction step for recent C-arm systems
with flat panel detector can be considered as a prototype for
modern clinical CT systems. C-arm CT’s, as the one shown
in Figure 1, perform the rotational acquisition of 96 high
resolution (1248 × 960 pixels) images. In practice, filtered
backprojection (FBP) methods such as Feldkamp algorithm
are widely used for performance reasons. The algorithm
consists of 2D pre-processing steps, backprojection, and 3D
post-processing. The volume reconstruction is performed in
backprojection step, making it by far the most time consuming
part of the process. The results obtained using multi-core
CPU-based implementation in this report still needs several
minutes for the reconstruction of volumes with high spatial
resolution of 5123 or more voxels.



This algorithm is characterized by high computational
intensity, non-trivial data dependencies, and complex
numerical evaluations but also offers embarrassingly parallel
structure. Hence this algorithm is particularly suited for
GPUs which are designed to handle parallel structures. In the
recent past, optimization of Feldkamp algorithm has focused
on GPUs (Muller and Yagel 1998) and was reported that a
large performance gains were obtained when compared to
CPUs (Muller et al. 2007). Studies indicate that large servers
are required to meet the performance of GPUs (Hofmann et
al. 2011). In this report, we use the RabbitCT environment
which defines clinically relevant test case.

RabbitCT is an open competition benchmark for
worldwide comparison in backprojection performance and
ranking on different architectures using one specific, clinical,
high resolution C-arm CT dataset of a rabbit. It also allows
implementation alternatives for reconstruction scenarios by
applying them to a fixed, well-defined problem. The high
computational demand of backprojection algorithm with
its embarrassingly parallel structure makes it interesting
candidates for its interface with high-performance computing
in medical applications.

This paper is organized as follows. In section 2 we intro-
duce Intel Xeon X5365 processor. We also look at bandwith
contraints of this processor for this application. Section 3 gives
a theoretical background of the backprojection algorithm.
In Section 4, our approach to parallelize the algorithm is
introduced. Two levels of parallelization is considered in this
section. In section 5, the results of tests and validation of its
analysis is presented. Finally, we conclude the paper in section
6 by showing the importance of volume reconstruction on a
commodity processor.

II. EXPERIMENTAL ARCHITECTURE

Intel x86-based multicore processor, server variant, Xeon
X5365 has been chosen to test the performance potential of
our parallelization approach. This architecture consists of a
dual socket motherboard, thus in essential, we have eight
processing cores with each of them running on a single thread
(no Hyper-Threading). A quad-core processor with 65 nm
feature size, is the successor of the Woodcrest processor and
belongs to core microarchitecture. This chip feature a large
outer level cache of 8 MB (at level 2), which is shared by
two cores with 4 MB per core. This model consists of dual
channel memory architecture operating at a bandwidth of 667
MHz per channel between Random Access Memory (RAM)
and the memory controller with each channel transferring
64 bits of data per cycle. This makes the processor to have
an effective Front Side Bus (FSB) bandwidth of 1333 MHz.
Thus, this system has a DDR-2-667 MHz RAM memory with
a maximum theoretical transfer rate of 10.67 GB/second.
A detailed description of architecture is shown in figure 2.
This figure illustrates only one socket of the system but in
reality, the system consists of two of these identical memory

subsystem.

Figure 2: Intel Xeon X5365.

A comprehensive summary of the most important processor
features is presented in table 1. Table 1 also contains the band-
width measurements for a simple read and write benchmark[9]
:

A. Cache Read:

This bench mark is designed to provide us with read
bandwidth for varying vector lengths.

timer start
for iteration count

for I=0 to vector length
register += memory[I]

timer stop

For the cases where vector length is less than the cache size,
the data will be received completely from cache and resulting
bandwidth was much higher. This is best illustrated in plot
shown in figure 3. Since the architecture under consideration
has a last level cache (L2) of 8 MB, the bandwidth reduces
drastically after it reaches a point where the data is no more
available in the cache to be fetched and request has to be sent
to the main memory.

B. Cache Write:

This benchmark is designed to provide us with write
bandwidth for varying vector lengths. This benchmark is
greatly affected by architectural peculiarities in the memory
subsystem. Replacement policy and associativity play
important factors in the performance of this benchmark.

timer start



Figure 3: GNU Plot for cache read

Figure 4: GNU Plot for cache write

for iteration count
for I = 0 to vector length

memory[I] = register++
timer stop

This benchmark is illustrated in a plot shown in figure 4.

This benchmark reflects the performance of memory
subsystem of the system. Such a benchmark is helpful in
evaluation of the data streaming properties of the problem
under consideration. We use GNU GCC compiler version
4.1.2. Since this architecture doesn’t support hyperthreading,
one thread per core (total of 8 threads) is utilized. The
compiled code was profiled on Intel VTune Amplifier XE,
version 2013

III. THE ALGORITHM

A. Reconstruction task

The dataset required for this experiment was downloaded
from RabbitCT website [7]. This dataset contained N=496
high resolution images. The size of the image is Sx = 1248
pixels in width and Sy = 960 pixels in height. This is
a pre-processed and filtered dataset acquired by a C-arm
system [1]. Hence, only backprojection step is considered

Table I: Microarchitecture details

in this paper. Each projection image is associated to a
precalibrated projection matrix An ∈ R3x4 that encodes
a projection image. The reconstruction was performed
on an isocentric cubic volume of 2563mm3. The side
lengths of the cubic reconstruction given by RabbitCT are
L ∈ {128, 256, 512, 1024} voxels respectively at an isotropic
voxel size of RL = (256/L)mm.

The reconstructed volume is denoted by f(x,y,z) where
x, y, z ∈ [−128, 128] and the origin of the world coordinate
system (in mm) is considered to be located at the isocenter of
the c-arm system. In the discrete form, the volume is denoted
by fL(i, j, k), where i, j, k ∈ [0, . . . , L− 1]. This is related to
world coordinate system as:
fL(i, j, k) = f(OL + iRL, OL + jRL, OL + kRL)
with OL = − 1

2RL(L− 1).
In this paper, the Implementation, testing and performance

analysis of reconstruction was done with a resolution of L =
256 voxels in each direction.

B. Reconstruction algorithm

The FDK algorithm utilized consists of acquisitions that
exceeds total orbital extent of 180◦ + fan anlge. The redundant
rays in the projection data are weighted with Parker weighting
[10] to yield an accurate reconstruction of short-scan C-arm
projection data. Pre-processing of the projection data like
cosine weighting, physical correction, and ramp filtering is
requred. All these correction steps have already been applied
to the available projection image In in the dataset provided



by RabbitCT. The discrete form of the FDK algorithm is thus
given as[2]:

f(x, y, z) =

N∑
n=1

1

Wn(x, y, z)2
.p̂n(un(x, y, z), vn(x, y, z)),

where
wn(x, y, z) = a2x+ a5y + a8z + a11,

un(x, y, z) = (a0x+ a3y + a6z + a9).wn(x, y, z)
−1 ,

vn(x, y, z) = (a1x+ a4y + a7z + a10).wn(x, y, z)
−1,

and the projection matrix

An =

 a0 a3 a6 a9
a1 a4 a7 a10
a2 a5 a9 a11



The prjection of a voxel will in general not hit exactly one
pixel of the 2D CT image. Therefore, the projection value is
computed by bilinear interpolation of the four nearby pixels.
One volume reconstruction uses 496 CT images of 1248 × 960
pixels each. The algorithm computes the contribution of each
voxel across all projection images and stores the reconstructed
volume in array f . Voxel coordinates are denoted by x,y and
z while the pixel coordinates are denoted by u and v. Refer
figure 5 for the geometric setup. The function p̂n : R×R→ R
peforms bilinear interpolation with zero boundary condition in
the projection image In [2]. It is given by:

p̂n = (1− α)(1− β)pn(i, j) + α(1− β)pn(i+ 1, j)

+(1− α)βpn(i, j + 1) + αβpn(i+ 1, j + 1),

where i = |x|, j = |y|, α = x− |x|, and β = y − |y|.
The values in the image matrix are accessed by the function

pn : Z× Z→ R,

which is given by :

f(n) =

{
In if i ∈ {0, . . . , Sx − 1} ∧ j ∈ {0, . . . Sy − 1}
0 otherwise

One sweep across all the voxels of the volume causes all the
pixel values from the projection image to be loaded plus the
projection matrix values. The final volume needs to be updated
to f(x, y, z) and that causes 8bytes of traffic per voxel and this
results in a total of 134 MB (for the problem size of 2563) or
67 GB for all projections. The cumulative size of all projection
images is ≈ 2.4 GB.

Figure 5: Geometric setup for generating CT projection
images. The size of the volume is 2563mm3. x-y-z plane
represents volume while u-v the image plane

IV. PARALLEL IMPLEMENTAION

The basic backprojection exhibits a streaming access
pattern for most of its data traffic. Listing 1 provides a
better understanding of the algorithm. The voxel update loop
runs for each projection image (496 times in this case). The
projection of a voxel will ingeneral not hit one exact pixel,
therefore bilinear interpolation of four closest pixels are
computed. The final updated volume is stored in f L.

Listing 1: RabbitCT Algorithm for backprojection of nth
projection image

input: I_n, A_n, L, O_L, R_L
output: reconstructed volume f_L

for(int k=from; k<to; k++){
// Calculate the coordinates in the world
// coordinate system
double z = O_L + (double)k * R_L;
for(unsigned int j=0; j<L; j++){
double y = O_L + (double)j * R_L;
for(unsigned int i=0; i<L; i++){
x=O_L + (double)i * R_L;

//use projection matrix to calculate
//the index of projection images
w_n=(A_n[2]*x+A_n[5]*y+A_n[8]*z+A_n[11]);
u_n=(A_n[0]*x+A_n[3]*y+A_n[6]*z+A_n[9])/w_n;
v_n=(A_n[1]*x+A_n[4]*y+A_n[7]*z+A_n[10])/w_n;
//calculate alpha and beta



iu=(int)floor(u_n);
iv=(int)floor(v_n);
alpha=u_n-iu;
beta =v_n-iv;

// load the pixels from nth image
pixel_bl=I[iv*S_x+iu);
pixel_br=I[iv*S_x+iu+1);
pixel_tl=I[(iv+1)*S_x+iu);
pixel_tr=I[(iv+1)*S_x+iu+1);

//Do the interpolation
fx=(1.0-alpha)*(1.0-beta)*pixel_bl+

(1.0-alpha)*beta*pixel_br+alpha*
(1.0-beta)*pixel_tl+

alpha*beta*pixel_tr;

//Update the final volume
f_L[k*L*L+j*L+i]+=

(float)(1.0/(w_n*w_n)*fx);

}//i
}//j

}//k

The implementation of this algorithm has two levels of
parallelization. Hardware and software parallelization.

A. Hardware parallelization:

Imagine a case where there are four voxels that are being
processed with only one image for every iteration of the
inner loop in listing 1 and for every voxel, the corresponding
colored pixels are being accessed for bilinear interpolation
(refer Figure 5). Each image consists of 1248 x 960 pixels.
With floating point values of each pixel, the total size of each
image is 4.8 MB. And 496 such images are considered in
this dataset. In this level of parallelization, the whole volume
is divided into equal number of slices and they are binded
to each available thread (Eight in this case). Each slice is
processed by only one pthread. This is done to ensure that
there is no data sharing between the threads which helps in
avoiding inter-processor communication. Thread binding was
done using Pthreads.

As seen from the processor diagram in Figure 2, each core
consists of 4 MB of L2 cache. Therefore we can assume that
most part of an image can be loaded into L2. For the sake of
analysis, it was assumed that core0 starts processing voxels
and four pixels be requested for every voxel it processed.
Initially there will be capacity misses since this will be the first
time the images will be loaded into the memory subsystem.
According to MESI protocol, when pixels occupy a block
in L2, they will be in execlusive state. When core1 starts
processing it’s set of voxels for the same projection image,
the request for pixels are generated by that core. At this

time core0 snoops into the bus and offers to share the pixel
values to core1 . The state is then changed from exclusive to
shared. Since this is just a read operation, it is expected to
not have any read for ownership (RFO) call and thus all the
pixel values are gauranteed to preserve it’s shared state. The
same process is repeated for the rest of all the available cores
as each of the cores processes its own slice of the volume.
This creates local copies of the projection images in each of
its L2 making this a ccNUMA friendly data access. Since the
working set considered here is huge, each core gets huge chuck
of 256× 256× 32mm3 volume to process

B. Software parallelization:

For every voxel loaded by the processing core, it requestes
for four corresponding pixels. The final volume after bilinear
interpolation is stored in the volume array f L. Since this
architecture has write back with write allocate cache policy,
the last operation is expensive. It creates 8 bytes of traffic
for every update operation. For a problem size of 2563, the
total traffic could be 66 GB for all projections. This level of
parallelization is aimed at reducing this huge amount of data
traffic since we have a bandwidth starved processor. In this
approach the outer loop is unrolled by a factor of 2. This
approach is conventially called as blocking. Listing 2 shows
our approach.

Listing 2: Blocking approach to reduce data traffic

for(imageNo=0; imageNo<248; imageNo+=2){
for(k=0;k<256;k++){
for(j=0;j<256;j++){
for(i=0;i<256;i++){

//Perform bilinear interpolation
------------------------
------------------------

//Update the final volume for image 1
f_L[k*256*256+j*256+i]+=

(float)(1.0/(w_n*w_n)*image_1);

//Update the final volume for image 2
f_L[k*256*256+j*256+i]+=

(float)(1.0/(w_n*w_n)*image_2);

}//i
}//j
}//k

}//imageNo

As seen from the listing 2, two images are loaded at a time
for every iteration. The update operation is executed twice,
once for each projection. At the problem size considered
here, nearly half of each projection image can be stored in



the L2. All the voxel data for one line can be stored in the L1
cache and be reused 1 time thus exploring temporal locality
of the cache. Hence the complete volume is updated in
memoory only 248 times instead of 496 times. This approach
reduces the bandwidth requirements and the benefits of this
optimization is reported in our performance results.

Another level of software parallelization is performed by
unrolling the outer loop of the kernel (k-loop in listing 2).
This approach is called unroll and jam which is another level
of unrolling done basically to enlarge the block size of the
kernel that might give the compiler enough opportunities for
rescheduling the instructions and take care of dependencies.
Unrolling was done by a factor of 2 since large unrolling
factors started showing negative impacts on speedup due to
register overflow. The resuls of this optimization is reported
in the next section.

V. RESULTS

As it should be straight forward, the results of hardware par-
allelization is impressive with a speed up of 7.33 with respect
to serial implementation (refer Figure 8) with a response time
showing around 101 seconds when compared with 740 seconds
of serial implementation. This shows that the implementation
performed a very good load balancing. The entire volume was
divided equally between 8 threads with no data being shared
between any of the threads. This was designed in such a way
that there was no thread contention.

Software parallelization was done to reduce the pressure
on the memory interface. As seen in Figure 6, the bus
traffic reduced by almost 40 percent through this approach.
This is attributed to 50 percent reduction in the number of
volume update operations which in-turn reduces the number
of memory write operations. Unroll and jam is another level
of software parallelization which was aimed at giving the
compiler enough opportunities to take care of the dependent
instructions and reschedule them. As shown in Figure 7, the
number of pipeline stalls went down by around 25 percent
through these two approaches.

A. Validation of analysis

To validate the performace of the implemented
backprojection algorithm, RabbitCT has provided a
reference reconstruction frefL on their website for each
problem size. The validation is performed here in terms of
speed and quality. The speed of the reconstruction, tavg is
the measure of efficiency of backprojection algorithm by
computing the average time to process all the voxels for one
projection. This time includes data access time, interpolation
time and computation time. This is a most important metric
and was already noted above to be around 88 seconds for our
approach. This timing result shows how long a physician has
to wait until the result of the reconstruction is processed and
final image apprears on the computer screen.

Figure 6: Plot showing reduction in the bus trafic due to
software parallelization

Figure 7: Plot showing reduction in pipeline stalls for different
approaches

The quality of the reconstruction is estimated by comparing
the results obtaied by our approach and the reference imple-
mentation by RabbitCT . This reference is used to estimate
the numerical accuracy of our reconstructed volume f L. The
mean squared error qmse(f L) of reconstruction in Hounsfield
units (HU2) in comparision with reference reconstruction is
given by:

qmse(f L) =
1

L3

∑
i,j,k

[f L(i, j, k)− fref L(i, j, k)]2

The ouput of the reconstruction algorithm is scaled to be
in the 12-bit range of 0, · · · , 4095 hounsfield units. The peak
signal to noise ratio, qpsnr is measured in decibels (dB) :



Figure 8: Speed-ups in comparision with the serial implemen-
tation

qpsnr(f L) = 10 log10
40952

qmse(f L)
.

Our approach resulted in zero errors and a peak signal to
noise ratio ( qpsnr) of infinity.

VI. CONCLUSIONS AND OUTLOOK

Two major levels of optimization techniques were
implemented to the reconstruction algorithm. It was observed
that backprojection was the most time consuming part
of the algorithm and several optimization techniques
involved were focused on reducing the time taken for
the entire reconstruction while preserving the quality of
the reconstructed image. It was reported that hardware
parallelization was the most effective since it produced
perfect load balancing between 8 threads. Pthreads were
used to bind core0 through core7 with one Pthread per
core. A great speed up of 7.33 through this approach was
achieved. Software parallelization was aimed at reducing the
pressure on the memory interface and filling pipeline bubble
with useful work. Blocking approach and loop unroll were
performed in this level of parallelization and a collective
speed up of 8.4 was recorded. The reconstruction was
completed with a response time of around 88 seconds after
software parallelization was performed.

This algorithm can achieve a good performance on a
multicore architecture. At higher resolutions, which are used
in industrial applications, multicore systems are frequently
a choice when cost is a primary concern. The future work
includes a thorough analysis of the data movement pattern
and vectorization. Vectorization with AVX2 gather operations
might yield a better performance due to their wider SIMD
width.
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