Theorem 2.3. DeMorgan's Laws for sets. Let A and B be sets. Then we have 1. $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 2. $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof. To prove that $\overline{A \cup B} = \overline{A} \cap \overline{B}$, we start by showing that each set is a subset of the other. The definition of a subset states that A is a subset of B if every element $a \in A$ is also an element of B. Since A and B are sets, if $A \subset B$ and $B \subset A$, then A = B.

Suppose $x \in \overline{A \cup B}$, which means $x \notin A \cup B$. Then $x \notin A$ and $x \notin B$. Hence, $x \in \overline{A}$ and $x \in \overline{B}$. This means $x \in \overline{A \cap B}$. Thus, $\overline{A \cup B} \subset \overline{A} \cap \overline{B}$. Now suppose, $x \in \overline{A} \cap \overline{B}$. Then $x \in \overline{A}$ and $x \in \overline{B}$. Hence $x \notin A$ and $x \notin B$, which means that $x \notin A \cup B$. Therefore, $x \in \overline{A \cup B}$. Thus proving that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

To prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$, we start by showing that each set is a subset of the other. Suppose $x \in \overline{A \cap B}$, which means $x \notin A \cap B$. Then $x \notin A$ and $x \notin B$. Hence, $x \in \overline{A}$ and $x \in \overline{B}$. This means $x \in \overline{A \cup B}$. Thus, $\overline{A \cap B} \subset \overline{A \cup B}$. Now suppose, $x \in \overline{A \cup B}$. Then $x \notin A$ and $x \notin \overline{B}$. Hence, $x \notin \overline{A}$ and $x \notin \overline{B}$. Hence $x \notin A$ and $x \notin B$, which means that $x \notin A \cap B$. Therefore, $x \in \overline{A \cap B}$. Thus proving that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Theorem 4.4. Let a,b and $c \in \mathbb{Z}$. If a divides b and b divides c then a divides c.

Proof. Assume a divides b and b divides c. Since a divides b, there exists $n_1 \in \mathbb{Z}$ such that $an_1=b$. Since b divides c, there exists n_2 such that $bn_2=c$. Since we know the existential statement is true in the universe you can use it to create an instance of an object with the property it describes. So, we let $m=n_1n_2$. Then

 $am = an_1n_2 = bn_2 = c$

Since am=c, we have shown that a divides c.

Theorem 7.11. Suppose that R is a relation on A. Then R is both symmetric and antisymmetric, if and only if $R \subset Id_A$.

Proof. Assume R is symmetric and anti-symmetric. This means that all ordered pairs $(a,b) \in R$, there must be a pair $(b,a) \in R$, and this can only be true when a=b. This means every ordered pair in R is a value $a \in A$ relates to itself. Since the Id_A is a relation that includes every value in A related to itself, R must be a subset of Id_A .

Assume $\mathbb{R} \subset Id_A$. This means that \mathbb{R} can only have elements that are also in Id_A . Therefore every element of \mathbb{R} is an ordered pair $(a,b) \in \mathbb{A}$ where a=b. Since a=b in every element of \mathbb{R} , it satisfied the conditions for anti-symmetry. Also, Since (a,b) = (b,a), \mathbb{R} also satisfies the conditions for symmetry.

Theorem 10.9. Let $x \neq 1$ be any real number. For all natural numbers n we have $\frac{x^n-1}{x-1} = x^{n-1}+x^{n-2}+\ldots+x^2+x+1$

Proof. First, we define set S as the set $n \in \mathbb{N}$ such that $\sum_{k=1}^{n} x^{k-1} = \frac{x^{n-1}}{x-1}$ I will induct on n

Base Case (n=1): $\sum_{k=1}^{1} x^{k-1} = \frac{x^{1}-1}{x-1} = 1$

Inductive Hypothesis: Assume $\sum_{k=1}^{n} x^{k-1} = \frac{x^{n-1}}{x-1}$ holds for n.

Inductive Step: We want to show $\sum_{k=1}^{n+1} x^{k-1} = \frac{x^{n+1}}{x-1}$ $= \frac{x^{n+1}-x^n+x^{n-1}}{x-1}$ $= \frac{x(x^n)-x^n+x^n-1}{x-1}$ $= \sum_{k=1}^n x^{k-1} + \frac{x^{n-1}}{x-1} - \frac{x^n}{x-1}$ $= \sum_{k=1}^n x^{k-1} + x^n$ $= 1 + x^1 + x^2 + \dots + x^{n-2} + x^{n-1} + x^n$ $= \sum_{k=1}^{n+1} x^{k-1}$ Therefore, $S = \mathbb{N}$.

Theorem 3.2. If \mathcal{F} is a family of sets and $A \in \mathcal{F}$ then $A \subset \cup \mathcal{F}$.

Proof. Let $x \in A$ be arbitrary. We know $A \in \mathcal{F}$. Therefore, we know that there exists $A \in \mathcal{F}$ such that $x \in A$. Therefore by definition of $\cup \mathcal{F}$, which states that the union of \mathcal{F} is the collections of all sets that are elements of \mathcal{F} where there exists $x \in A$ for some $A \in \mathcal{F}$, $x \in \cup \mathcal{F}$. Since x is arbitrary, we have shown that $A \subset \cup \mathcal{F}$.

Theorem 6.1. If 0 < a < b where a and b are real numbers, then $a^2 < b^2$.

Proof. We assume that b > a > 0. Since a > 0, if we multiply both sides of b > a by a, we get $ab > a^2$. Similarly, since b > 0, if we multiply both sides of b > a by b, we get $b^2 > ab$. We can combine $ab > a^2$ and $b^2 > ab$ to get $b^2 > ab > a^2$. Therefore by the transitive property, $b^2 > a^2$. Thus we have shown that if b > a > 0, then $b^2 > a^2$.