Theorem 2.3. DeMorgan's Laws for sets. Let A and B be sets. Then we have

1. $\overline{A \cup B}=\bar{A} \cap \bar{B}$
2. $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Proof. To prove that $\overline{A \cup B}=\bar{A} \cap \bar{B}$, we start by showing that each set is a subset of the other. The definition of a subset states that A is a subset of B if every element $a \in A$ is also an element of B . Since A and B are sets, if $A \subset B$ and $B \subset A$, then $\mathrm{A}=\mathrm{B}$.

Suppose $x \in \overline{A \cup B}$, which means $x \notin A \cup B$. Then $x \notin A$ and $x \notin B$. Hence, $x \in \bar{A}$ and $x \in \bar{B}$. This means $x \in \overline{A \cap B}$. Thus, $\overline{A \cup B} \subset \bar{A} \cap \bar{B}$. Now suppose, $x \in \bar{A} \cap \bar{B}$. Then $x \in \bar{A}$ and $x \in \bar{B}$. Hence $x \notin A$ and $x \notin B$, which means that $x \notin A \cup B$. Therefore, $x \in \overline{A \cup B}$. Thus proving that $\overline{A \cup B}=\bar{A} \cap \bar{B}$.

To prove that $\overline{A \cap B}=\bar{A} \cup \bar{B}$, we start by showing that each set is a subset of the other. Suppose $x \in \overline{A \cap B}$, which means $x \notin A \cap B$. Then $x \notin A$ and $x \notin B$. Hence, $x \in \bar{A}$ and $x \in \bar{B}$. This means $x \in \overline{A \cup B}$. Thus, $\overline{A \cap B} \subset \bar{A} \cup \bar{B}$. Now suppose, $x \in \bar{A} \cup \bar{B}$. Then $x \in \bar{A}$ and $x \in \bar{B}$. Hence $x \notin A$ and $x \notin B$, which means that $x \notin A \cap B$. Therefore, $x \in \overline{A \cap B}$. Thus proving that $\overline{A \cap B}=\bar{A} \cup \bar{B}$.

Theorem 4.4. Let a, b and $\mathrm{c} \in \mathbb{Z}$. If a divides b and b divides c then a divides c .
Proof. Assume a divides b and b divides c. Since a divides b, there exists $n_{1} \in \mathbb{Z}$ such that $\mathrm{a} n_{1}=\mathrm{b}$. Since b divides c , there exists n_{2} such that $\mathrm{b} n_{2}=\mathrm{c}$. Since we know the existential statement is true in the universe you can use it to create an instance of an object with the property it describes. So, we let $\mathrm{m}=n_{1} n_{2}$. Then

$$
\mathrm{am}=a n_{1} n_{2}=b n_{2}=\mathrm{c}
$$

Since $\mathrm{am}=\mathrm{c}$, we have shown that a divides c .

Theorem 7.11. Suppose that R is a relation on A. Then R is both symmetric and antisymmetric, if and only if $R \subset I d_{A}$.

Proof. Assume R is symmetric and anti-symmetric. This means that all ordered pairs $(a, b) \in R$, there must be a pair $(b, a) \in R$, and this can only be true when $a=b$. This means every ordered pair in R is a value $\mathrm{a} \in \mathrm{A}$ relates to itself. Since the $I d_{A}$ is a relation that includes every value in A related to itself, R must be a subset of $I d_{A}$.

Assume $\mathrm{R} \subset I d_{A}$. This means that R can only have elements that are also in $I d_{A}$. Therefore every element of R is an ordered pair $(a, b) \in A$ where $a=b$. Since $a=b$ in every element of R, it satisfied the conditions for anti-symmetry. Also, Since $(a, b)=(b, a), R$ also satisfies the conditions for symmetry.

Theorem 10.9. Let $\mathrm{x} \neq 1$ be any real number. For all natural numbers n we have $\frac{x^{n}-1}{x-1}=x^{n-1}+x^{n-2}+\ldots+x^{2}+x+1$

Proof. First, we define set S as the set $\mathrm{n} \in \mathbb{N}$ such that $\sum_{k=1}^{n} x^{k-1}=\frac{x^{n-1}}{x-1}$
I will induct on n
Base Case ($\mathbf{n}=\mathbf{1}$): $\quad \sum_{k=1}^{1} x^{k-1}=\frac{x^{1}-1}{x-1}=1$
Inductive Hypothesis: Assume $\sum_{k=1}^{n} x^{k-1}=\frac{x^{n-1}}{x-1}$ holds for n .
Inductive Step: We want to show $\sum_{k=1}^{n+1} x^{k-1}=\frac{x^{n+1}}{x-1}$

$$
\begin{aligned}
& =\frac{x^{n+1}-x^{n}+x^{n-1}}{x-1} \\
& =\frac{x\left(x^{n}\right)-x^{n}+x^{n}-1}{x-1} \\
& =\frac{x\left(x^{n}\right)}{x-1}-\frac{x^{n}}{x-1}+\frac{x^{n-1}}{x-1} \\
& =\sum_{k=1}^{n} x^{k-1}+\frac{x\left(x^{n}\right)}{x-1}-\frac{x^{n}}{x-1} \\
& =\sum_{k=1}^{n} x^{k-1}+x^{n} \\
& =1+x^{1}+x^{2}+\ldots+x^{n-2}+x^{n-1}+x^{n} \\
& =\sum_{k=1}^{n+1} x^{k-1}
\end{aligned}
$$

Therefore, $S=\mathbb{N}$.

Theorem 3.2. If \mathcal{F} is a family of sets and $A \in \mathcal{F}$ then $A \subset \cup \mathcal{F}$.
Proof. Let $\mathrm{x} \in \mathrm{A}$ be arbitrary.We know $\mathrm{A} \in \mathcal{F}$. Therefore, we know that there exists $\mathrm{A} \in \mathcal{F}$ such that $\mathrm{x} \in \mathrm{A}$. Therefore by definition of $\cup \mathcal{F}$, which states that the union of \mathcal{F} is the collections of all sets that are elements of \mathcal{F} where there exists $\mathrm{x} \in \mathrm{A}$ for some $\mathrm{A} \in \mathcal{F}, \mathrm{x}$ $\in \cup \mathcal{F}$. Since x is arbitrary, we have shown that $\mathrm{A} \subset \cup \mathcal{F}$.

Theorem 6.1. If $0<a<b$ where a and b are real numbers, then $a^{2}<b^{2}$.
Proof. We assume that $b>a>0$. Since $a>0$, if we multiply both sides of $b>a$ by a, we get $a b>a^{2}$. Similarly, since $b>0$, if we multiply both sides of $b>a$ by b , we get $b^{2}>a b$. We can combine $a b>a^{2}$ and $b^{2}>a b$ to get $b^{2}>a b>a^{2}$. Therefore by the transitive property, $b^{2}>a^{2}$. Thus we have shown that if $b>a>0$, then $b^{2}>a^{2}$.

