
Probabilistic Reasoning Over Time

Jack Foster Terwilliger

March 8, 2014

1 Introduction

In partially observable noisy environments, an agent must make decisions de-
spite its incomplete and potentially incorrect knowlege of the state of the en-
vironment. In such cases, the agent must infer what is unobservable in the
environment from what is observable. In order to make use of its observations
for inference, the agent must also have prior knowlege about 1.) its environ-
ment: how the environment changes over time and 2.) how observations are
emitted by the environment and sensed by the agent.

In this paper I will explore the use of HMMs and the forward, forwardback-
ward, and Viterbi algorithms to solve a robot location problem given a partially
observable maze. In my code, I used the linear algebra java library, la4j.

2 Sensor Robot Problem

In the Sensor Robot Problem, a color sensing robot is placed in a maze with
colored tiles and must locate its position in the maze. The robot is given a
sequence of observations from its sensors (which are prone to error) and knowl-
ege of the maze. It uses this information as evidence to form a probabilistic
distribution over possible locations.

Let’s rephrase this in HMM terms. The robot is given a transition model T
from it’s knowlege of the layout of the maze, an observation model O from its
knowlege of the coloring of the maze, and a sequence of observations E1:t picked
up from its sensors after moving around in the maze, and it must use the given
to determind Xt, the set of state variables at time t.

Now let’s rephrase this in probablistic terms. The set of state variables (the
legal locations in the maze) will be represented as Xt and the set of state emis-
sions (the colors of the maze tiles) as Et. The transmission model T determins
probability distribution over current state variables given past state values. T
can be represented as

P (Xt|X0:t−1). (1)

However this can be simplified based on a Markov Assumption, which states
that the current state is only depenant on the immidiately previous state. This
can be rephrased as

P (Xt|Xt−1)(MarkovAssum.), (2)

which unlike the former statement, does not grow in size with time.

1



The observation model O determines a probability distribution over emission
values given past states and emissions.O can be represented as

P (Et|X0:t, E1:t−1). (3)

However, we can make a similar assumption about O as T , that is emissions are
only dependant on the state at time T . O can be rephrased as

P (Et|Xt)(MarkovAssum.) (4)

So with O and T , the joint probability of the state is

P (X0:t, E1:t) = P (X0)P (X1|X0)P (E1|X1)...P (Xt|Xt − 1)P (Et|Xt) (5)

or more concicely,

P (X0:t, E1:t) = P (X0)

t∏
i=1

P (Xi|Xi − 1)P (Ei|Xi) (6)

With the above, the location task in the Sensor Robot Problem can be defined
as calculating the expression:

P (Xt|E1:t). (7)

Figure 1: Hidden Markov Model

2.1 Maze Representation

The maze is represented as a 2d character array wrapped in a maze class.
Maze.java from the mazeworld assignment was modified to serve this pur-
pose.Mazes are written as .maz files. Walls are represented with Xs and the
colors red, green, blue, yellow are represented respectively as r,g,b,y.

2



the f o l l ow i n g i s a 4x4 maze with 3 wa l l s :

rXbg
bXrX
ybrg
ybrg

2.2 Transition Model

The transition model is represented as a SxS Matrix where S is the number of
state variables such that

Tij = P (Xt = j|Xt−1 = i). (8)

By representing only the legal locations, time and memory is saved when calcu-
lating probability distributions. I used the la4j library to implement the Matrix.
T is generated automatically from a provided maze by the following method.

1 // c r e a t e the t r a n s i t i o n model from an a s c i i r e p r e s en t a t i on o f the
maze

2 //Each entry i s : T ( i j ) = P(X ( t ) = j | X ( t−1) = i )
3 //
4 //SxS where S i s the number o f v a r i a b l e s
5 // X1 X2 X3
6 //X1 [P( x1 | x1 ) ] [ P( x1 | x2 ) ] [ P( x1 | x2 ) ] . . .
7 //
8 //
9 //X2 [P( x2 | x1 ) ] [ P( x2 | x2 ) ] [ P( x1 | x2 ) ] . . .

10 //
11 //
12 //X3 [P( x3 | x1 ) ] [ P( x3 | x2 ) ] [ P( x1 | x2 ) ] . . .
13 //
14 //
15 //X4 [P( x4 | x1 ) ] [ P( x4 | x2 ) ] [ P( x1 | x2 ) ] . . .
16 // . . .
17 p r i va t e Matrix t rans i t i onMode l ( ) {
18
19 //Key = se t o f l o c a t i o n s Value = s e t o f ne ighbors
20 Hashtable<Integer , HashSet<Integer>> topography= getTopography ( ) ;
21
22 // s i z e i s number o f va r i ab l e s x number o f va r i ab l e s
23 // i = Xt−1, j = Xt
24 double [ ] [ ] t r a n s i t i o n p r o b a b i l i t i e s = new double [ v a r i a b l e s . l ength

] [ ] ;
25
26 // get P(X t |X t−1) f o r every va r i ab l e pa i r
27 i n t i =0;
28 f o r ( i n t v a r i a b l e : v a r i a b l e s ) {
29 t r a n s i t i o n p r o b a b i l i t i e s [ i ] = new double [ v a r i a b l e s . l ength ] ;
30
31 i n t j =0;
32 f o r ( i n t pas tVar iab l e : v a r i a b l e s ) {
33
34 // get P(X t |X t−1)
35 //put i t in the matrix
36 t r a n s i t i o n p r o b a b i l i t i e s [ i ] [ j ] = ge tTran s i t i onProbab i l i t y (

pastVar iab le , va r i ab l e , topography ) ;
37 j++;
38 }
39 i++;

3



40 }
41 re turn new Basic2DMatrix ( t r a n s i t i o n p r o b a b i l i t i e s ) ;
42 }

2.3 Observation Model

The observation model is represented as an array of SxS diagonal Matrices where
S is the number of state variables such that

Oi = P (et|Xt = i) (9)

. Each matrix corresponds to an emission variable and the contents of each
matrix correspond to the probability of emission by the state variable. I used
the la4j library to implement the Matrices.

O is generated automatically from a provided maze by the following method.

1 // bu i ld the obse rvat i on model
2 //a l i s t o f matr i ce s
3 // each matrix conta in s the p r o b a b i l i t i e s that a s t a t e would emit

the g iven obse rvat i on va r i ab l e
4 // the matr i ce s are d iagona l so that we can do matrix mu l t i p l i c a t i o n

with the t r a n s i t i o n model
5 //SxS where S i s the number o f v a r i a b l e s
6 // X1 X2 X3 X4
7 // X1 [ p1 ] [ 0 ] [ 0 ] [ 0 ]
8 // X2[ 0 ] [ p2 ] [ 0 ] [ 0 ]
9 // X3[ 0 ] [ 0 ] [ p3 ] [ 0 ]

10 // X4[ 0 ] [ 0 ] [ 0 ] [ p4 ]
11 p r i va t e Matrix [ ] observat ionModel ( ) {
12 Matrix [ ] obs mod = new Matrix [COLORS. l ength ] ;
13
14
15 i n t index=0;
16 f o r ( char c o l o r : COLORS) {
17 double [ ] [ ] obs matr ix = new double [ v a r i a b l e s . l ength ] [ ] ;
18 i n t i =0;
19 f o r ( i n t v a r i a b l e : v a r i a b l e s ) {
20
21 obs matr ix [ i ] = new double [ v a r i a b l e s . l ength ] ; // c r e a t e an

array f u l l o f 0 s
22
23 // i f i t s a t rue read ing
24 i f (maze . getChar ( v a r i ab l e ) == co l o r ) {
25 obs matr ix [ i ] [ i ] = 1 − e r r o r r a t e ;
26 }
27
28 // i f i t s an e r r o r
29 e l s e {
30 obs matr ix [ i ] [ i ] = e r r o r r a t e /(COLORS. length −1) ;
31 }
32 i++;
33
34 }
35 obs mod [ index ] = new Basic2DMatrix ( obs matr ix ) ;
36 index++;
37 }
38 re turn obs mod ;
39 }

4



2.4 Sensor Robot Representation

SensorRobot.java extends the abstract class ProbabilisticReasoningAgent.java.
The state is represented within ProbabilisticReasoningAgent.java as an Ar-
rayList of Vectors of length S, where each index is the beliefstate at time t,
S is the number of state variables and each entry is the probability of being at
a particular location.

ProbabilistingReasoningAgent.java:

1 // t r a n s i t i o n and obse rvat i on models are r ep re s en ted as a l i s t s o f
matr ices , which are i n s t a n t i a t e d in conc r e t e c l a s s e s

2
3 p r i va t e Matrix t r an s i t i on mode l ; //#va r i a b l e s x #va r i a b l e s
4 p r i va t e Matrix [ ] observat ion mode l ; // l i s t o f d iagona l matr i ce s

each matrix corre sponds to an obse rvat i on model f o r a
p a r t i c u l a r obse rvat i on value #vars x #vars

5
6 pub l i c ArrayList<Vector> s t a t e ; // p r obab i l i t y d i s t r i b u t i o n o f

s t a t e v a r i a b l e s over time

SensorRobot contains representations of other useful bits of information in
addition to beliefstate. It stores a char array of possible observation values.
Since, ProbablisticReasoningAgent represents variables as ints, we pass the value
of the color’s index to it. And it stores the error rate of the sensors.

In addition to the above mentioned transition and observation model builders,
SensorRobot contains generateRandomMoves(int num) and generateObserva-
tions(int[][] path, boolean toErrr). generateObservations returns a sequence of
observations which may or may not contain errors proportional to the error rate
depending on whether boolean toErrr is triggered.

SensorRobot.java

1 // the s e t o f robot moves
2 p r i va t e s t a t i c i n t [ ] [ ] MOVES = {{1 ,0} ,{0 ,1} ,{ −1 ,0} ,{0 ,−1}} ;
3
4 // the s e t o f p o s s i b l e c o l o r s
5 p r i va t e f i n a l char [ ] COLORS = { ’ r ’ , ’ g ’ , ’ b ’ , ’ y ’ } ;
6
7 // the max numbers o f ne ighbors per l o c a t i o n
8 p r i va t e f i n a l double NUMNEIGHBORS = 4 ;
9

10 // the senso r e r r o r ra t e
11 p r i va t e double e r r o r r a t e ;
12
13 p r i va t e Maze maze ; // the robot knows the layout o f the maze
14
15 pub l i c i n t [ ] v a r i a b l e s ; // the l i s t o f v a r i a b l e s and t h e i r l o c a t i o n s

in the maze
16
17 // cons t ruc t the HMM based o f f the maze
18 pub l i c SensorRobot (Maze m) {
19
20 maze = m;
21
22 e r r o r r a t e = . 1 2 ;
23
24 //Construct the models from the maze
25 s e tVa r i ab l e s ( ) ;
26 setT ( t rans i t i onMode l ( ) ) ;
27 setO ( observat ionModel ( ) ) ;
28 s e tS t a t e ( v a r i a b l e s . l ength ) ;

5



29 }
30
31 //Generate a random se t o f moves −− a l i s t o f c oo rd ina t e s
32 pub l i c i n t [ ] [ ] generateRandomMoves ( i n t num) {
33 Random random = new Random( ) ;
34
35 i n t [ ] [ ] path = new in t [num ] [ ] ;
36
37 i n t var = va r i a b l e s [ random . next Int ( v a r i a b l e s . l ength ) ] ;
38 path [ 0 ] = new in t [ ] { var%maze . width , var /maze . width } ;
39
40 f o r ( i n t i =1; i< num; i++){
41 i n t [ ] move = MOVES[ random . next Int (MOVES. l ength ) ] ;
42 i n t newx = path [ i −1 ] [ 0 ] + move [ 0 ] ;
43 i n t newy = path [ i −1 ] [ 1 ] + move [ 1 ] ;
44 i f (maze . i s L e g a l (newx , newy) ) {
45 path [ i ] = new in t [ ] { newx , newy } ;
46 }
47 e l s e {
48 path [ i ] = path [ i −1] ;
49 }
50 }
51 re turn path ;
52 }
53
54 // from a robot path , generate a l i s t o f ob s e rva t i on s
55 // parameters : boolean e r r r . i f t rue the s enso r w i l l e r r
56 pub l i c i n t [ ] generateObservat ions ( i n t [ ] [ ] path , boolean toErrr ) {
57 i n t [ ] ob s e rva t i on s = new in t [ path . l ength ] ;
58
59 i f ( ! toErr r ) {
60 i n t i =0;
61 f o r ( i n t [ ] l o c a t i o n : path ) {
62 char c = maze . getChar ( l o c a t i o n [ 0 ] , l o c a t i o n [ 1 ] ) ;
63
64 obs e rva t i on s [ i ] = getCharInt ( c ) ;
65 i++;
66 }
67 re turn obse rva t i on s ;
68 }
69
70 Random random = new Random( ) ;
71
72 i n t i =0;
73 f o r ( i n t [ ] l o c a t i o n : path ) {
74 char c = maze . getChar ( l o c a t i o n [ 0 ] , l o c a t i o n [ 1 ] ) ;
75
76 double e r r o r = random . nextDouble ( ) ;
77 System . out . p r i n t l n ( e r r o r + ” ” + e r r o r r a t e ) ;
78 // get the c o r r e c t obse rvat i on
79 i n t charva l = getCharInt ( c ) ;
80
81 //Generate a random e r r o r
82 i f ( e r r o r < e r r o r r a t e ) {
83 i n t e r r o r cha r = charva l ;
84 whi l e ( e r r o r cha r == charva l ) {
85 e r r o r cha r = random . next Int (COLORS. length −1) ;
86 }
87 obs e rva t i on s [ i ] = e r r o r cha r ;
88 }
89 e l s e {
90 obs e rva t i on s [ i ] = charva l ;

6



91 }
92
93
94 i++;
95 }
96 re turn obse rva t i on s ;
97 }

3 Filtering

Filtering is the process of computing the belief state at the current time t, given
previous observations – that is computing expression (7). However, it is best to
look at filtering as a process of updating the belief state. This way, the filtering
algorithm needs not compute the belief state from 0:t every time the agent wants
to compute its current belief state, but rather build off previous calculations.
Thus we rewite expression (7) as a function of an updating filtering algorithm:

P (Xt+1|e1 : t+ 1) = f(e1:t+1, P (Xt|e1:t)) (10)

3.1 Forward Algorithm

The Forward algorithm can be seen as a recursive algorithm which teases the
P (Xt+1|e1 : t+ 1) into something calculatable, by eumerating it into a set of
expressions defined by the models T and O.

P (Xt+1|e1:t+1) = P (Xt+1|e1:t, et+1)(splittingtheterm)
= αP (et+1|Xt+ 1, e1:t)P (Xt+1|et+ 1)(Bayes)
= αP (et+1|Xt+ 1)P (Xt+1|e1 : t)(MarkovAssum.)
= αP (et+1|Xt+ 1)

∑
xt
P (Xt+1|xt, e1 : t)P (xt|e1:t)(JointProbability)

= αP (et+1|Xt+ 1)
∑

xt
P (Xt+1|xt)P (xt|e1:t)(MarkovAssum.)

...
(11)

The filtering expression has been enumerated from P (Xt+1|e1:t+1) to several
terms held in the model (P (et+1|Xt+ 1) = Oi and P (Xt+1|xt) = Tij) and α,
a normalizing constant. As for P (xt|e1:t), which is not in the model, it is the
belief state at the previous time slice! If it is defined as forward1:t, the value
returned from a previous iteration, then filtering can be defined as a recursive
algorithm which computes the distribution over state variables from time 1 to
t. This is the Forward algorithm:

forward1:t+1 = αP (et+1|Xt+ 1)
∑

xt
P (Xt+1|xt)P (xt|e1:t)

= αOt+1T
T forward1:t(matrixmultiplication)

= αFORWARD1:t+1(forward1:t, et+1)(substitution)
(12)

The Forward algorithm’s time complexity grows linearly with time. Since, it
only needs to keep track of the previous step it only requires constant space.//

In my implementation of the forward algorithm, I used matrices to represent
T and O.

1

7



2 //Compute the B e l i e f State at time t : P( Sta t e 0 : t |
sequenceOfObservat ions 1 : t )

3 //
4 // r e tu rn s a sequence o f b e l i e f s t a t e s at each step o f the

obse rvat i on
5 // parameters : i n t [ ] obs i s the sequence o f ob s e rva t i on s
6 pub l i c ArrayList<Vector> f i l t e r ( i n t [ ] obs ) {
7 ArrayList<Vector> f o rward vec to r = new ArrayList<Vector>() ;
8 f o rward vec to r . add ( s t a t e . get (0 ) ) ;
9 re turn forward ( f o rward vec to r . get (0 ) , obs , fo rward vector , 0 ,

f a l s e ) ;
10 }
11
12 p r i va t e ArrayList<Vector> forward ( Vector prev forward , i n t [ ] obs ,

ArrayList<Vector> s t a t e t o t , i n t t , boolean isFB ) {
13 //Base Case
14 i f ( t >= obs . l ength ) {
15 re turn s t a t e t o t ;
16 }
17
18 //Recurs ive Case
19 Vector cur rent = nu l l ;
20 //not used f o r forward backward , normal ize
21 i f ( isFB == f a l s e ) {
22 //new matrix = a∗O∗Transpose (T) ∗( prev forward )
23 cur rent = normal ize ( getO ( obs [ t ] ) . mul t ip ly ( getT ( ) ) . mul t ip ly (

prev forward ) ) ;
24 }
25 e l s e {
26 //new matrix = a∗O∗Transpose (T) ∗( prev forward )
27 cur rent = getO ( obs [ t ] ) . mul t ip ly ( getT ( ) ) . mul t ip ly ( prev forward ) ;
28 }
29
30 s t a t e t o t . add ( cur rent ) ;
31
32 // r e c u r s i v eCa l l
33 re turn forward ( current , obs , s t a t e t o t , t+1, isFB ) ;
34 }

3.2 Filtering Results

The following is a table of the probability distribution over locations. Each
cell in the table represents a location at a specified time. At time t=0, the
distribution is uniform, representing that the robot has no idea where it is. At
time t=1 the robot senses the presence of red and updates the belief state and
so on.

Maze :
rg
by

8



Figure 2: Table of probability distribution over locations

The following is a graphical presentation of the same results as Figure 1.
Balkcom’s head represents the true location of the robot at time t. The black
bars represent the probability distribution at each location. The hight of the
bar represents the probability value. 1 = a bar that spans the entire hight of a
tile. .5 = a bar that spans half the hight of a tile and so on.

9



Figure 3: 2x2 Maze Filtering X0:t

However, Filtering is not always accurate. Sometimes the most probable
location given a sequence of observations is not the actual location! At times
t=8 and t=9 the most probable location is different than the actual location.
At t=8, this is because the red tile between the walls has a higher probability
(.5)of transitioning into itself than to the red tile adjacent it (.25). Thus, the
calculation at t=8 carries over to t=9.

Figure 4: 4x4 Maze Filtering X1:t

4 Smoothing

Smoothing is the process of computing the belief state at a past time k, given
every observation up to the current time t where 0 < k < t:

P (Xk|e1:t) (13)

10



4.1 Forward-Backward Algorithm

Expresssion 13 can be split into two expressions, one which is the Forward
algorithm the other is the Backward algorithm:

P (Xk|e1:t) = αP (Xk|e1:k)P (ek+1:t|Xk, e1 : k)(Bayes)
= αP (Xk|e1:k)P (ek+1:t|Xk)(condit.Indepenanceseefig.1)
= αforward1:k(x)backwardk+1:t

(14)

Whereas the forward algorithm computes the probability distribution over
state variables given a sequence of observations, the backwards algorithm com-
putes the probability of a sequence of observations given probability distribu-
tions over state variables.

P (ek+1:t|Xk) =
∑

xk+1
P (ek+1:t|Xk, xk+1)P (xk+1|Xk)(JointProbability)

=
∑

xk+1
P (ek+1:t|xk+1)P (xk+1|Xk)(condit.Independanceseefig.1)

=
∑

xk+1
P (ek+1, ek+2:t|xk+1)P (xk+1|Xk)(seperatingobservations)

=
∑

xk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P (xk+1|Xk)

(condit.IndpOfek+1Andek + 2Givenxk+1)
...

(15)
Like in the forward algorithm, the expression has been enumerated from

P (ek+1:t|Xk) to several termsin the transition and observation models (P (ek+1|xk+1) =
Oi and P (xk+1|Xk) = Tij). As for P (ek+2:t|xk+1), which is not known in the
models, it is expression at the next time step! Thus, the backward algorithm can
be defined as a recursive algorithm that probagates its message, backwardk+1:t,
backwards from t to k:

backwardk+1:t =
∑

xk+1
P (ek+1|xk+1)P (ek+2:t|xk+1)P (xk+1|Xk)

= TOk+1backwardk+2:t(matrixmultiplication)
= BACKWARDk+1:t(backwardk+2:t, ek+1)(substitution)

(16)
The forwardbackward algorithm is much more accurate than just the forward

algorithm. However, the forwardbackward algorithm is not as memory efficient.
Its space complexity is O(ft) where f is the size of the forward message and t
is the number of time steps.

In my implementation of the forwardbackward algorithm, I used matrices

1
2 //Compute the B e l i e f State at time k : P( Sta t e 0 : k |

sequenceOfObservat ions 1 : k ) ∗PsequenceOfObservat ions k+1: t |
State k +1: t )

3 //
4 // r e tu rn s a sequence o f b e l i e f s t a t e s at each step o f the

obse rvat i on
5 // parameters : i n t [ ] obs i s the sequence o f ob s e rva t i on s
6 pub l i c ArrayList<Vector> smoothing ( i n t [ ] obs ) {
7 re turn forwardBackward ( obs ) ;
8 }
9

10 //Compute the B e l i e f State at time k : P( Sta t e 0 : k |
sequenceOfObservat ions 1 : k ) ∗PsequenceOfObservat ions k+1: t |
State k +1: t )

11



11 //
12 // r e tu rn s a sequence o f b e l i e f s t a t e s at each step o f the

obse rvat i on
13 // parameters : i n t [ ] obs i s the sequence o f ob s e rva t i on s
14 p r i va t e ArrayList<Vector> forwardBackward ( i n t [ ] obs ) {
15
16 ArrayList<Vector> f o rward vec to r s = new ArrayList<Vector>() ;
17 forward ( s t a t e . get (0 ) , obs , f o rward vec to r s , 0 , t rue ) ;
18
19 ArrayList<Vector> backward vectors = new ArrayList<Vector>() ;
20
21 //backwards a lgor i thm s t a r t s with a vec to r f i l l e d with ones
22 double [ ] f i r s tBa ck = new double [ s t a t e . get (0 ) . l ength ( ) ] ;
23 Arrays . f i l l ( f i r s tBack , 1 . 0 ) ;
24 backward vectors . add (0 , new BasicVector ( f i r s tBa ck ) ) ;
25
26 backward ( backward vectors . get (0 ) , obs , obs . length −1,

backward vectors , t rue ) ;
27
28 f o r ( i n t i =0; i<obs . l ength ; i++){
29 s t a t e . add ( normal ize ( f o rward vec to r s . get ( i ) . hadamardProduct (

backward vectors . get ( i ) ) ) ) ;
30 }
31 re turn s t a t e ;
32 }
33
34 p r i va t e ArrayList<Vector> backward ( Vector prev backward , i n t [ ] obs ,

i n t t , ArrayList<Vector> s t a t e t o 1 , boolean isFB ) {
35 //Base Case
36 i f ( t < 1) {
37 re turn s t a t e t o 1 ;
38 }
39
40 //Recurs ive Case
41
42 Vector cur rent = nu l l ;
43 i f ( isFB != true ) {
44 //new matrix = a∗T∗O∗( prev backward )
45 cur rent = normal ize ( getT ( ) . mul t ip ly ( getO ( obs [ t ] ) ) . mul t ip ly (

prev backward ) ) ;
46 }
47 e l s e {
48 //new matrix = T∗O∗( prev backward )
49 cur rent = getT ( ) . mul t ip ly ( getO ( obs [ t ] ) ) . mul t ip ly ( prev backward )

;
50 }
51
52 s t a t e t o 1 . add (0 , cur r ent ) ;
53
54 // r e c u r s i v eCa l l
55 re turn backward ( current , obs , t−1, s t a t e t o 1 , isFB ) ;
56 }

4.2 Smoothing Results

The following is a table of the probability distribution over locations. Each
cell in the table represents a location at a specified time. At time t=0, the
distribution is uniform, representing that the robot has no idea where it is. At
time t=1 the robot senses the presence of red and updates the belief state and
so on.

12



Excluding the belief states at time = 0 and time = t, the forward backward
algorithm is much more accurate than the forward algorithm. At time = 0 and
time = t, the distributions returned from forward-backward and forward are
exactly the same. Looking at Figures 1. and 5. shows this is true.

Figure 5: 2x2 ForwardBackward

The following is a graphical presentation of the same results as Figure 5.

13



Figure 6: 2x2 ForwardBackward

5 Forward vs. ForwardBackward

5.1 Accuracy

In many cases, filtering makes mistakes. At time k, it makes many more mistakes
than smoothing. For example, at time = 8 the robot believes it is on the red
tile between the walls. This is because the filtering gets no information from
observations made after k.

Figure 7: 4x4maze filtering: pobability distribution of locations

14



Figure 8: 4x4maze smoothing: pobability distribution of locations

5.2 Dealing with a Noisy Channel

Since the sensors of the robot are prone to error, it is important to have al-
gorithms which can deal with error. This error is treated as a noisy channel,
and the error rate is accounted for in the observation model. First, in figures
11 and 12, results from filtering and smoothing respectively of a sequence of
observations with no error are shown.

Figure 9: Filtering: no errors in observation sequence

15



Figure 10: Smoothing: no errors in observation sequence

However, in figures 13 and 14 there is an error at time = 1. Instead of reading
yellow, the robot reads red. With filtering, not only, does the distribution not
make an accurate inference afterword, but the distribution is not even clustered
around the actual distribution. However, with smoothing, the distribution re-
covers after the erronious sensor reading. And, even at the erronious time step,
the distribution is clustered around the actual location.

Figure 11: Filtering: 1 Error at time t=1

16



Figure 12: Smoothing: 1 Error at time t=1

My results suggest that filtering should be used only to update and predict
states in the future. To infer the belief state at previously observed timeslices,
Forward-Backward should be used.

6 Most Likely Path

To calculate the most likely path taken, the robot must find the most likely
path to the most likely variable at time t+1.

maxx1:t
P (x1:t, Xt+ 1|e1:t+1) (17)

6.1 Virterbi Algorithm

The Viterbi Algorithm computes expression 17. An interesting perspectve of
the Viterbi Algorithm is to view it as modified breadth first search, where the
depth is defined by time, the goal is defined by argmaxxP (Xt+1|et+1), and the
get neighbors function is a modified filtering update function.Thus:

maxx1:t
P (x1:t, Xt+ 1|e1:t+1)

= αP (et+1|Xt+1)(P (Xt+1|xt)maxx1:t−1P (x1:t−1), xt|e1:t)
(18)

Viterbi, like filtering takes linear time. But unlike filtering, which only re-
quires constant space, Viterbi’s memory usage grows linearly with time, because
it has to keep track of back pointers.

1 //Compute the Most L ike ly Path through the s t a t e space g iven a
sequence o f ob s e rva t i on s

2 //
3 // I didn ’ t use l a 4 j in V i t e rb i
4 //
5 // r e tu rn s an array o f i n t s r ep r e s en t i ng s t a t e v a r i a b l e s
6 // parameters : i n t [ ] obs i s the sequence o f ob s e rva t i on s
7 pub l i c i n t [ ] mostLikelySequence ( i n t [ ] obs ) {

17



8 // i n i t i a l i z e s t a t e at t0 :
9 double [ ] s t a r t p r o b a b i l i t y = new double [ t r an s i t i on mode l . rows ( ) ] ;

10 Arrays . f i l l ( s t a r t p r o b ab i l i t y , 1) ;
11 re turn v i t e r b i ( obs , 0 , s t a r t p r o b ab i l i t y , new in t [ obs . l ength ] [ ] ) ;
12 }
13
14 //Recurs ive V i t e rb i : At time t , f i nd the most probable path f o r

every s t a t e va r i a b l e from t−1 to t
15 //
16 // r e tu rn s the most l i k e l y path through the s t a t e space
17 // parameters : i n t [ ] obs the sequence o f obse rvat ions , i n t t the

cur rent time s l i c e t ,
18 // double [ ] p a s t p r o b a b i l i t i e s the p r obab i l i t y d i s t r i b u t i o n o f s t a t e

v a r i a b l e s at time t−1, i n t [ ] [ ] v i t e rb iPath s e t o f backPointers
f o r every t

19 p r i va t e i n t [ ] v i t e r b i ( i n t [ ] obs , i n t t , double [ ] p a s t p r o b a b i l i t i e s
, i n t [ ] [ ] v i t e rb iPath ) {

20
21 //Base Case
22
23 // backtrack through the s e t o f backpo inte r s
24 i f ( t >= obs . l ength ) {
25 re turn backtrack ing ( v i te rb iPath , p a s t p r o b a b i l i t i e s ) ;
26 }
27
28 //Recurs ive Case
29
30 // get Ot
31 Matrix obs mod = observat ion mode l [ obs [ t ] ] ;
32
33 //new s e t o f backpo inte r s and s e t o f p r obab i l i t y d i s t r i b u t i o n

over s t a t e v a r i a b l e s
34 i n t [ ] subPath = new in t [ p a s t p r o b a b i l i t i e s . l ength ] ;
35 double [ ] c u r r e n t p r o b a b i l i t i e s = new double [ p a s t p r o b a b i l i t i e s .

l ength ] ;
36
37 // f o r every va r i ab l e x t , get the max P( x1 t |X t−1)
38 f o r ( i n t s t a t e v a r i a b l e c u r r e n t =0; s t a t e v a r i a b l e c u r r e n t<

t r an s i t i on mode l . rows ( ) ; s t a t e v a r i a b l e c u r r e n t++){
39
40 i n t max = 0 ; // the max va r i ab l e
41 double max prob = 0 ; // the max p r obab i l i t y
42 double f u l l p r o b = 0 ;
43
44 // f o r every va r i ab l e x t−1
45 f o r ( i n t s t a t e v a r i a b l e p a s t =0; s t a t e v a r i a b l e p a s t<

t r an s i t i on mode l . columns ( ) ; s t a t e v a r i a b l e p a s t++){
46
47 double p r o b ab i l i t yO f s t a t e v a r i a b l e = t ran s i t i on mode l . get (

s t a t e v a r i a b l e c u r r e n t , s t a t e v a r i a b l e p a s t ) ∗obs mod . get (
s t a t e v a r i a b l e c u r r e n t , s t a t e v a r i a b l e c u r r e n t ) ∗
p a s t p r o b a b i l i t i e s [ s t a t e v a r i a b l e p a s t ] ;

48
49 i f ( p r o b ab i l i t yO f s t a t e v a r i a b l e > max prob ) {
50 max = s t a t e v a r i a b l e p a s t ;
51 max prob = p r ob ab i l i t yO f s t a t e v a r i a b l e ;
52 }
53 f u l l p r o b += p r ob ab i l i t yO f s t a t e v a r i a b l e ;
54
55 }
56
57 //add backpo inter

18



58 subPath [ s t a t e v a r i a b l e c u r r e n t ] = max ;
59
60 //The On the l a s t i t e r a t i o n , get the combined p r obab i l i t y

o f a s t a t e .
61 // t h i s way v i t e r b i chooses the most l i k e l y path to the most

l i k e l y s t a t e at t
62 i f ( obs . length−1 == t ) {
63 System . out . p r i n t l n ( s t a t e v a r i a b l e c u r r e n t + ” ” + max prob ) ;
64 //add max P( x t |X t−1)
65 c u r r e n t p r o b a b i l i t i e s [ s t a t e v a r i a b l e c u r r e n t ] += f u l l p r o b ;
66 }
67 e l s e {
68 c u r r e n t p r o b a b i l i t i e s [ s t a t e v a r i a b l e c u r r e n t ] = max prob ;
69 }
70
71 }
72 v i t e rb iPath [ t ] = subPath ;
73
74 // r e cu r s e
75 re turn v i t e r b i ( obs , t+1, c u r r e n t p r o b a b i l i t i e s , v i t e rb iPath ) ;
76 }
77
78 //Backtrack through the most l i k e l y path
79 // at each time t , a v a r i ab l e po in t s backward to which s t a t e most

l i k e l y t r a n s i t i o n ed to i t
80 //
81 // r e tu rn s i n t [ ] path . an array o f i n t s r ep r e s en t i ng the most l i k e l y

path through s t a t e space
82 // parameters : v i t e rb iPath i s the s e t o f backpo inte r s at every time

t , double [ ] p a s t p r o b a b i l i t i e s the d i s t r i b u t i o n o f s t a t e
v a r i a b l e s over time t

83 p r i va t e i n t [ ] backtrack ing ( i n t [ ] [ ] v i t e rb iPath , double [ ]
p a s t p r o b a b i l i t i e s ) {

84 //System . out . p r i n t l n ( p a s t p r o b a b i l i t i e s [ 2 6 ] + ” ” +
p a s t p r o b a b i l i t i e s [ 7 ] + ” ” + p a s t p r o b a b i l i t i e s [9 ]+ ” ” +
p a s t p r o b a b i l i t i e s [13 ]+ ” ” + p a s t p r o b a b i l i t i e s [16 ]+ ” ” +
p a s t p r o b a b i l i t i e s [ 2 0 ] + ” ” + p a s t p r o b a b i l i t i e s [ 3 5 ] ) ;

85 i n t [ ] path = new in t [ v i t e rb iPath . l ength ] ;
86
87 //Find the most probable s t a t e at time t
88 //we w i l l backtrack through the path that l e t to t h i s s t a t e
89 i n t max = 0 ;
90 double max prob = 0 ;
91 f o r ( i n t j =0; j<p a s t p r o b a b i l i t i e s . l ength ; j++){
92 i f (max prob<p a s t p r o b a b i l i t i e s [ j ] ) {
93 max = j ;
94 max prob = p a s t p r o b a b i l i t i e s [ j ] ;
95 }
96 }
97
98
99 path [ v i t e rb iPath . length −1] = max ;

100 re turn backtrack ing ( v i te rb iPath , v i t e rb iPath . length −1, path ) ;
101 }
102
103 //Backtrack through the most l i k e l y path
104 // at each time t , a v a r i ab l e po in t s backward to which s t a t e most

l i k e l y t r a n s i t i o n ed to i t
105 //
106 // r e tu rn s i n t [ ] path
107 // parameters : v i t e rb iPath i s the s e t o f backpo inte r s at every time

t ,

19



108 p r i va t e i n t [ ] backtrack ing ( i n t [ ] [ ] v i t e rb iPath , i n t t , i n t [ ] path ) {
109
110 //Base Case
111 i f ( t == 0) {
112 re turn path ;
113 }
114
115 // r e c u r s i v e case
116 path [ t−1] = v i t e rb iPath [ t ] [ path [ t ] ] ;
117 re turn backtrack ing ( v i te rb iPath , t−1, path ) ;
118
119 }

6.2 Viterbi Results

The Viterbi algorithm doesn’t always find the actual path taken by the robot.
In cases where there are two equi-probable paths, the viterbi algorithm has no
tie breaker method, and returns one of the equi-probable with not particular
discresion. Figure 15 shows the true path of the robot. Figure 16 shows the
path returned by Viterbi, and that the path returned by Viterbi was equally as
probable as the path taken.

Figure 13: path taken

20



Figure 14: viterbi path

Figures 17 and 18 show a similar phenomenon as figures 15 and 16. In this
case, the robot finds it’s way to the appropirate end tile, but on it’s way instead
of moving on an upward path along the red tiles, it starts and remains on the
red tile between the two walls.

21



Figure 15: path taken

Figure 16: viterbi path

The maze in figures 19 and 20 is very redundant. Each quadrant is identical.

22



Viterbi has a particularly difficult time finding the actual path taken by the
robot in redundant state spaces.

Figure 17: path taken

Note the probability distribution at time t. It is not concentrated on one
tile. Rather it is spread accross all green tiles. All but one tile has a path to it
which fits the observation sequence.

23



Figure 18: viterbi path

Figure 21 illustrates the number of paths through the maze.

24



Figure 19: vizualization of most paths in maze given the observations

7 Conclusion

Using HMMs, the robot was able to udate its belief state of location in the
maze very efficiently, with good accuracy using filtering. When looking at past
states, the robot was able to determine its location with great accuracy with
some sacrifice of memory using the forward-backward algorithm. And it was
able to find a path maximized over the probability of locations over time Viterbi.
While prone to errors, using HMMs to infer the unobservable location of the
robot in the maze was powerful given the low time complexities with respect to
time.

8 References

Russell, Stuart J., and Peter Norvig. ”Chapter 15 Probabilistic Reasoning
Over Time.” Artificial Intelligence: A Modern Approach. Upper Saddle River:

25



Prentice-Hall, 2010. N. pag. Print.

26


