Lecture 11: February 16

Lecturer: Ankur Kulkarni

Scribes: Tushar Phatangare, Mayur Vangujar

Note: LaTeX template courtesy of UC Berkeley EECS dept.
Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Simplex Algorithm (Continued)

11.1.1 Assumptions

So far we have made the following assumptions:

1. The LP is in the standard form i.e.

$$
\begin{array}{r}
\min c^{T} x \\
\text { s.t } A x=b, \\
x \geq 0
\end{array}
$$

where $C, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $\operatorname{rank}(A)=m$
2. Every Basic Feasible Solution i.e. BFS is non-degenerate
3. BFS is in the form

$$
\begin{equation*}
[I \mid Y][x]=y_{0} \tag{11.1}
\end{equation*}
$$

where I is $m \times m$ Identity Matrix, $x=\left[\begin{array}{c}x_{B} \\ x_{N B}\end{array}\right], x_{B} \in R^{n}$ and $x_{N B} \in R^{n-m}$

11.2 Basic Steps of Algorithm

- Generic step of the algorithm is to swap a basic variable with a non basic variable. For now assume that we have selected basic variable x_{p} and non-basic variable x_{q} to swap
- x_{p} can be swapped with x_{q} if and only if $Y_{p q} \neq 0$ because if $Y_{p q}$ is equal to 0 then column vector Y_{q} can be represented as linear combination of $m 1$ basis vectors i.e.

$$
Y_{q}=\sum_{i=1}^{m} y_{i \neq p} * I_{i}
$$

and hence Y_{q} cannot be included in basic solution

- Now make $q^{\text {th }}$ column as $\left[\begin{array}{lllllll}0 & \ldots & 0 & 1_{p} & 0 & \ldots & 0\end{array}\right]$ where 1_{p} signifies 1 at $p^{\text {th }}$ position. For that divide $p_{t h}$ row of matrix $\left[\begin{array}{ll}I & Y\end{array}\right]$ and matrix $[Y(0)]$ by $Y_{p q}$ and apply the row operation $R_{i} \Rightarrow$ $R_{i}-Y_{i q} * R_{p}$

11.3 Determining the Leaving Variable p

- While applying row transformation of $\left[\begin{array}{ll}I & Y\end{array}\right]$ rows of $[I]$ also changes and are given by

$$
Y_{i 0}^{\prime}=Y_{i 0}-Y_{i q} * Y_{p 0} / Y_{i 0}
$$

Condition $Y_{i 0}{ }^{\prime} \geq 0$ must satisfy otherwise x_{q} would not be a BFS.

- So choose p such that

$$
p \in S=\underset{i}{\operatorname{argmin}}\left\{Y_{i 0} / Y_{i q} \mid Y_{i q} \geq 0\right\}
$$

- If number of elements in S is >1 then the would become degenerate. Since non-degeneracy is assumed

$$
p=\underset{i}{\operatorname{argmin}}\left\{Y_{i 0} / Y_{i q} \mid Y_{i q} \geq 0\right\}
$$

11.4 Determining the Entering Variable q

- We Know that

$$
\begin{gathered}
{\left[\begin{array}{ll}
I & Y
\end{array}\right]\left[\begin{array}{c}
x_{B} \\
x_{N B}
\end{array}\right]=[Y(0)]} \\
x_{B}=Y_{0}-Y x_{N B} \\
\text { Where }\left[\begin{array}{c}
x_{B} \\
x_{N B}
\end{array}\right] \geq 0
\end{gathered}
$$

- Initial Cost:

$$
\begin{aligned}
& c^{T}\left[\begin{array}{c}
x_{B} \\
x_{N B}
\end{array}\right] \\
& =c_{B}^{T} x_{B}+c_{N B}^{T} x_{N B} \\
& \\
& =c_{B}^{T} x_{B} \\
& \\
& =c_{B}^{T} Y_{0}
\end{aligned} \text { since } x_{N B}=0 \text { and } I * x_{B}+Y * x_{N B}=Y_{0} \quad l
$$

- Now cost is

$$
\begin{aligned}
& c^{T}\left[\begin{array}{c}
x_{B} \\
x_{N B}
\end{array}\right]=c_{B}^{T} x_{B}+c_{N B}^{T} x_{N B} \\
& =c_{B}^{T}\left(Y_{0}-Y x_{N B}\right)+c_{N B}^{T} x_{N B} \\
& \quad=c_{B}^{T} Y_{0}+\left(c_{N B-Y^{T} c_{B}}\right)^{T} x_{N B}
\end{aligned}
$$

- Now we can choose q such for which $\left(c_{N B}-Y^{T} c_{B}\right)_{q}<0$
- Formalizing the above concept

$$
\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & Y_{1, m+1} & Y_{1, m+2} & \ldots & Y_{1, n} \\
0 & 1 & \ldots & 0 & Y_{2, m+1} & Y_{2, m+2} & \ldots & Y_{2, n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \ldots & . \\
0 & 0 & \ldots & 1 & Y_{m, m+1} & Y_{m, m+2} & \ldots & Y_{m, n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\cdot \\
\cdot \\
\cdot \\
x_{m} \\
\cdot \\
\cdot \\
\cdot \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{10} \\
\cdot \\
\cdot \\
\cdot \\
y_{m 0} \\
\cdot \\
\cdot \\
\cdot \\
y_{n 0}
\end{array}\right]
$$

and

$$
\begin{aligned}
\left(c_{N B}-Y^{T} c_{B}\right)^{T} x_{N B} & =\sum_{j=m+1}^{n}\left(c_{j}-Z_{j}\right) * x_{j} \\
\text { Where } Z_{j} & =\sum_{i=1}^{m}\left(Y_{i, j} * c_{i}\right)
\end{aligned}
$$

- To determine the entering variable choose j such that $\left(c_{j}-Z_{j}\right)<0$

11.4.1 Theorem 8.1.

Given a non-degenerate Basic Feasible Solution with objective value Z^{\prime}. Suppose $c_{j}-Z_{j}{ }^{\prime}<0$ for some j there is a feasible solution with objective value $<Z^{\prime}$. Also if variable x_{j} can be substituted for a variable in the basis for a new BFS, we get new BFS with value $Z_{0}<0$. If this cannot be done then the solution is unbounded.

11.5 Optimality condition

The Basic Feasible Solution is optimal if

$$
\forall, \quad c_{j}-Z_{j} \geq 0
$$

11.6 Some Points to Ponder

- f there does not exist p to replace then we have founded the recession direction and the cost can be reduced to $-\infty$
- In the worst case the Simplex Algorithm might visit all the extreme points. Example - Klee Minty cube

11.7 Duality

Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. The primal problem is:

$$
\begin{gathered}
\min _{x} c^{T} x \\
A x=b \\
x \geq 0 \\
\text { Where } A \in R^{m \times n}, \operatorname{Rank}(A)=m
\end{gathered}
$$

with the corresponding symmetric dual problem,

$$
\begin{gathered}
\max _{y} b^{T} y \\
A^{T} y \leq c \\
\text { Where } A \in R^{m \times n}, \operatorname{Rank}(A)=m
\end{gathered}
$$

