SC-607: Optimization	Spring 2016
	Lecture 11: February 16
Lecturer: Ankur Kulkarni	Scribes: Tushar Phatangare, Mayur Vangujar

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

11.1 Simplex Algorithm (Continued)

11.1.1 Assumptions

So far we have made the following assumptions:

1. The LP is in the standard form i.e.

$$\min c^T x$$

s.t $Ax = b$,
 $x \ge 0$

where $C, x \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and rank(A) = m

- 2. Every Basic Feasible Solution i.e. BFS is non-degenerate
- 3. BFS is in the form

 $[I | Y] [x] = y_0$ where I is $m \times m$ Identity Matrix, $x = \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix}$, $x_B \in \mathbb{R}^n$ and $x_{NB} \in \mathbb{R}^{n-m}$ (11.1)

11.2 Basic Steps of Algorithm

- Generic step of the algorithm is to swap a basic variable with a non basic variable. For now assume that we have selected basic variable x_p and non-basic variable x_q to swap
- x_p can be swapped with x_q if and only if $Y_{pq} \neq 0$ because if Y_{pq} is equal to 0 then column vector Y_q can be represented as linear combination of m 1 basis vectors i.e.

$$Y_q = \sum_{i=1 \ i \neq p}^m y_{iq} * I_i$$

and hence Y_q cannot be included in basic solution

• Now make q^{th} column as $\begin{bmatrix} 0 & \dots & 0 & 1_p & 0 & \dots & 0 \end{bmatrix}$ where 1_p signifies 1 at p^{th} position. For that divide p_{th} row of matrix $\begin{bmatrix} I & Y \end{bmatrix}$ and matrix $\begin{bmatrix} Y(0) \end{bmatrix}$ by Y_{pq} and apply the row operation $R_i \Rightarrow$ $R_i - Y_{iq} * R_p$

Determining the Leaving Variable p 11.3

• While applying row transformation of $\begin{bmatrix} I & Y \end{bmatrix}$ rows of $\begin{bmatrix} I \end{bmatrix}$ also changes and are given by

$$Y_{i0}' = Y_{i0} - Y_{iq} * Y_{p0} / Y_{i0}$$

Condition $Y_{i0}' \ge 0$ must satisfy otherwise x_q would not be a BFS.

• So choose p such that

$$p \in S = \underset{i}{argmin} \{Y_{i0}/Y_{iq} | Y_{iq} \ge 0\}$$

• If number of elements in S is > 1 then the would become degenerate. Since non-degeneracy is assumed

$$p = \underset{i}{argmin} \{Y_{i0}/Y_{iq} | Y_{iq} \ge 0\}$$

Determining the Entering Variable q 11.4

• We Know that

$$\begin{bmatrix} I & Y \end{bmatrix} \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix} = \begin{bmatrix} Y(0) \end{bmatrix}$$
$$x_B = Y_0 - Y x_{NB}$$
$$Where \begin{bmatrix} x_B \\ x_{NB} \end{bmatrix} \ge 0$$

• Initial Cost:

$$c^{T} \begin{bmatrix} x_{B} \\ x_{NB} \end{bmatrix} = c_{B}^{T} x_{B} + c_{NB}^{T} x_{NB}$$
$$= c_{B}^{T} x_{B}$$
$$= c_{B}^{T} Y_{0}$$

_

since
$$x_{NB} = 0$$
 and $I * x_B + Y * x_{NB} = Y_0$

• Now cost is

$$c^{T} \begin{bmatrix} x_{B} \\ x_{NB} \end{bmatrix} = c^{T}_{B}x_{B} + c^{T}_{NB}x_{NB}$$
$$= c^{T}_{B}(Y_{0} - Yx_{NB}) + c^{T}_{NB}x_{NB}$$
$$= c^{T}_{B}Y_{0} + (c_{NB-Y^{T}c_{B}})^{T}x_{NB}$$

• Now we can choose q such for which $(c_{NB} - Y^T c_B)_q < 0$

• Formalizing the above concept

									x_1		y_{10}	
[1	0		0	$Y_{1,m+1}$	$Y_{1.m+2}$		$Y_{1,n}$	•		•	
	0	1		0	$Y_{2,m+1}$	$Y_{2,m+2}$		$Y_{2,n}$	•		•	
		•	•						$\frac{1}{x_m}$	_	· 1/m0	
	•	•	•	•	•				•		<i>911</i> 0	
	•	•	•	•	·	V	•••	V				
L	. 0	0		T	$Y_{m,m+1}$	$Y_{m,m+2}$		$Y_{m,n}$				
									x_n		y_{n0}	

and

$$(c_{NB} - Y^T c_B)^T x_{NB} = \sum_{j=m+1}^n (c_j - Z_j) * x_j$$

Where
$$Z_j = \sum_{i=1}^{m} (Y_{i,j} * c_i)$$

• To determine the entering variable choose j such that $(c_j - Z_j) < 0$

11.4.1 Theorem 8.1.

Given a non-degenerate Basic Feasible Solution with objective value Z'. Suppose $c_j - Z_j' < 0$ for some j there is a feasible solution with objective value < Z'. Also if variable x_j can be substituted for a variable in the basis for a new BFS, we get new BFS with value $Z_0 < 0$. If this cannot be done then the solution is unbounded.

11.5 Optimality condition

The Basic Feasible Solution is optimal if

$$\forall, \quad c_j - Z_j \ge 0$$

11.6 Some Points to Ponder

- f there does not exist p to replace then we have founded the recession direction and the cost can be reduced to $-\infty$
- In the worst case the Simplex Algorithm might visit all the extreme points. Example Klee Minty cube

11.7 Duality

Every linear programming problem, referred to as a primal problem, can be converted into a dual problem, which provides an upper bound to the optimal value of the primal problem. The primal problem is:

$$\begin{array}{l} \min_{x} c^{T}x\\ Ax=b\\ x\geq 0\\ Where \ A\in R^{m\times n}, \ Rank(A)=m \end{array}$$

with the corresponding symmetric dual problem,

$$\begin{array}{l} \max_y \, b^T y \\ A^T y \leq c \\ Where \ A \in R^{m \times n}, \ Rank(A) = m \end{array}$$