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11.1 Simplex Algorithm (Continued)

11.1.1 Assumptions

So far we have made the following assumptions:

1. The LP is in the standard form i.e.

min cTx

s.t Ax = b,

x ≥ 0

where C, x ∈ Rn, A ∈ Rm×n , b ∈ Rm and rank(A) = m

2. Every Basic Feasible Solution i.e. BFS is non-degenerate

3. BFS is in the form
[I | Y ]

[
x
]

= y0 (11.1)

where I is m×m Identity Matrix, x =

[
xB

xNB

]
, xB ∈ Rn and xNB ∈ Rn−m

11.2 Basic Steps of Algorithm

• Generic step of the algorithm is to swap a basic variable with a non basic variable. For now assume
that we have selected basic variable xp and non-basic variable xq to swap

• xp can be swapped with xq if and only if Ypq 6= 0 because if Ypq is equal to 0 then column vector Yq

can be represented as linear combination of m 1 basis vectors i.e.

Yq =

m∑
i=1 i 6=p

yiq ∗ Ii

and hence Yq cannot be included in basic solution
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• Now make qth column as
[

0 ... 0 1p 0 ... 0
]

where 1p signifies 1 at pth position. For that

dividepthrow of matrix
[
I Y

]
and matrix

[
Y (0)

]
by Ypq and apply the row operation Ri ⇒

Ri − Yiq ∗Rp

11.3 Determining the Leaving Variable p

• While applying row transformation of
[
I Y

]
rows of

[
I
]

also changes and are given by

Yi0
′ = Yi0 − Yiq ∗ Yp0/Yi0

Condition Yi0
′ ≥ 0 must satisfy otherwise xq would not be a BFS.

• So choose p such that

p ∈ S = argmin
i
{Yi0/Yiq|Yiq ≥ 0}

• If number of elements in S is > 1 then the would become degenerate. Since non-degeneracy is assumed

p = argmin
i
{Yi0/Yiq|Yiq ≥ 0}

11.4 Determining the Entering Variable q

• We Know that [
I Y

] [ xB

xNB

]
=
[
Y (0)

]
xB = Y0 − Y xNB

Where

[
xB

xNB

]
≥ 0

• Initial Cost:

cT
[

xB

xNB

]
= cTBxB + cTNBxNB

= cTBxB

= cTBY0

since xNB = 0 and I ∗ xB + Y ∗ xNB = Y0

• Now cost is

cT
[

xB

xNB

]
= cTBxB + cTNBxNB

= cTB(Y0 − Y xNB) + cTNBxNB

= cTBY0 + (cNB−Y T cB )TxNB

• Now we can choose q such for which (cNB − Y T cB)q < 0
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• Formalizing the above concept


1 0 ... 0 Y1,m+1 Y1,m+2 ... Y1,n

0 1 ... 0 Y2,m+1 Y2,m+2 ... Y2,n

. . . . . . ... .

. . . . . . ... .

. . . . . . ... .
0 0 ... 1 Ym,m+1 Ym,m+2 ... Ym,n





x1

.

.

.
xm

.

.

.
xn


=



y10
.
.
.

ym0

.

.

.
yn0


and

(cNB − Y T cB)TxNB =

n∑
j=m+1

(cj − Zj) ∗ xj

Where Zj =

m∑
i=1

(Yi,j ∗ ci)

• To determine the entering variable choose j such that (cj − Zj) < 0

11.4.1 Theorem 8.1.

Given a non-degenerate Basic Feasible Solution with objective value Z ′ . Suppose cj − Zj
′ < 0 for some j

there is a feasible solution with objective value < Z ′ . Also if variable xj can be substituted for a variable
in the basis for a new BFS, we get new BFS with value Z0 < 0. If this cannot be done then the solution is
unbounded.

11.5 Optimality condition

The Basic Feasible Solution is optimal if

∀, cj − Zj ≥ 0

11.6 Some Points to Ponder

• f there does not exist p to replace then we have founded the recession direction and the cost can be
reduced to −∞

• In the worst case the Simplex Algorithm might visit all the extreme points. Example - Klee Minty
cube
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11.7 Duality

Every linear programming problem, referred to as a primal problem, can be converted into a dual problem,
which provides an upper bound to the optimal value of the primal problem. The primal problem is:

min
x

cTx

Ax = b

x ≥ 0

Where A ∈ Rm×n, Rank(A) = m

with the corresponding symmetric dual problem,

max
y

bT y

AT y ≤ c

Where A ∈ Rm×n, Rank(A) = m


