SOLUTION OF $x^x = 2$

DAVID RADCLIFFE

Consider the function $f(x) = x \exp(x)$, defined on the interval $[-1, \infty)$. This is a continuous function, and it is increasing since

$$f'(x) = (x+1)\exp(x) > 0$$

for all x > -1. Therefore, f is invertible.

The inverse of f is known as Lambert's W function, and it satisfies $W(t)\exp(W(t))=t$

for all $t \geq -1/e$. This equation can be rewritten as

(1)
$$W(t) = \frac{t}{\exp(W(t))}$$

We will use Lambert's W function to solve the equation $x^x = 2$. Note that the equation has exactly one solution in the positive reals by the Intermediate Value Theorem, since x^x increases continuously from 1 to 4 as x increases from 1 to 2.

$x^x = 2$	Given
$\ln(x^x) = \ln(2)$	Apply ln to both sides
$x\ln(x) = \ln(2)$	Simplify
$t\exp(t) = \ln(2)$	Substitute $t = \ln(x)$
$t = W(\ln(2))$	Definition of W
$x = \exp(W(\ln(2)))$	Apply exp to both sides
$x = \ln(2)/W(\ln(2))$	By equation (1)
$x \approx 1.55961046946.$	

Date: November 28, 2019.