SOLUTION OF $x^{x}=2$

DAVID RADCLIFFE

Consider the function $f(x)=x \exp (x)$, defined on the interval $[-1, \infty)$.
This is a continuous function, and it is increasing since

$$
f^{\prime}(x)=(x+1) \exp (x)>0
$$

for all $x>-1$. Therefore, f is invertible.
The inverse of f is known as Lambert's W function, and it satisfies

$$
W(t) \exp (W(t))=t
$$

for all $t \geq-1 / e$. This equation can be rewritten as

$$
\begin{equation*}
W(t)=\frac{t}{\exp (W(t))} \tag{1}
\end{equation*}
$$

We will use Lambert's W function to solve the equation $x^{x}=2$. Note that the equation has exactly one solution in the positive reals by the Intermediate Value Theorem, since x^{x} increases continuously from 1 to 4 as x increases from 1 to 2 .

$$
\begin{aligned}
x^{x} & =2 \\
\ln \left(x^{x}\right) & =\ln (2) \\
x \ln (x) & =\ln (2) \\
t \exp (t) & =\ln (2) \\
t & =W(\ln (2)) \\
x & =\exp (W(\ln (2))) \\
x & =\ln (2) / W(\ln (2)) \\
x & \approx 1.55961046946 .
\end{aligned}
$$

Given
Apply ln to both sides
Simplify
Substitute $t=\ln (x)$
Definition of W
Apply exp to both sides
By equation (1)

Date: November 28, 2019.

