Subsequences

Emily Jia y Jason Chen Under the Direction of Overlord Steve Condie Illinois Math and Science Academy

October 12, 2015

<ロト <四ト <注入 <注下 <注下 <

Subsequence

Definition 2.6.1

The sequence $\{b_n\}_{n=i}^{\infty}$ is a *subsequence* of $\{a_n\}_{n=k}^{\infty}$, with $i, k \in \mathbb{N}, i \ge k$ if and only if there exists a strictly increasing function, where $f : \{m \in \mathbb{N} \mid m \ge i\} \rightarrow \{m \in \mathbb{N} \mid m \ge k\}$ and $b_n = a_{f(n)}$ for all $n \in \mathbb{N}$.

イロト 不得下 イヨト イヨト

Subsequential Limit

Definition 2.6.3

 α is a subsequential limit point of a sequence $\{a_n\}$ iff there exists a subsequence of $\{a_n\}$ that converges to α . Let T be the set of all subsequential limits of $\{a_n\}$. Then, sup T is called the *limit superior* (upper limit) of $\{a_n\}$, and we can write

$$\sup T = \limsup_{n \to \infty} a_n = \varlimsup_{n \to \infty} a_n$$

Similarly, inf T is called the *limit inferior (lower limit)* of $\{a_n\}$, and we can write

$$\inf T = \liminf_{n \to \infty} a_n = \lim_{n \to \infty} a_n$$

Theorem 2.6.4 (Bolzano-Weierstrass Theorem for Sequences)

Any bounded sequence must have at least one convergent subsequence.

Theorem 2.6.5

A sequence converges to A if and only if each of its subsequences converges to A.

伺下 イヨト イヨト