Your Presentation

You

Where You're From

Date of Presentation

Introduction

- ► Your introduction goes here!
- ▶ Use itemize to organize your main points.

Examples

Some examples of commonly used commands and features are included, to help you get started.

Tables and Figures

- 1. Use tabular for basic tables see Table 3, for example.
- 2. You can upload a figure (JPEG, PNG or PDF) using the files menu.
- 3. To include it in your document, use the includegraphics command (see the comment below in the source code).

Table	ŝ	An	Example	table
-------	---	----	---------	-------

Apples	1	2
Oranges	3	4

Readable Mathematics

Let X_1, X_2, \ldots, X_n be a sequence of independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, and let

$$S_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{1}{n} \sum_{i=1}^n X_i$$

denote their mean. Then as *n* approaches infinity, the random variables $\sqrt{n}(S_n - \mu)$ converge in distribution to a normal $\mathcal{N}(0, \sigma^2)$.

Goal

Main goal that we want to prove.

Goal

Main goal that we want to prove.

► Something.

Goal

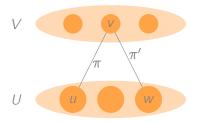
Main goal that we want to prove.

- ► Something.
- ► Something more.

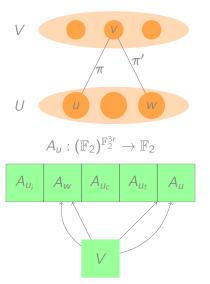
Goal

Main goal that we want to prove.

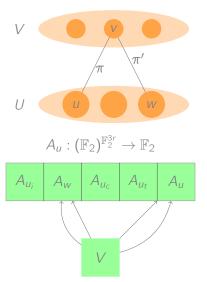
- ► Something.
- ► Something more.
- ▶ and more!.


Goal

Main goal that we want to prove.


- Something.
- ► Something more.
- ▶ and more!.

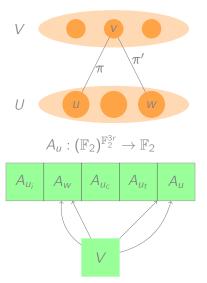
Relaxed Goal relaxation


using Long Code Reduction

using Long Code Reduction

using Long Code Reduction

Query


1. $A_u(e), A_u(e+f \circ \pi + 1 + \eta)$ 2. $A_w(e'), A_w(e'+f \circ \pi' + \eta')$

Where

1.
$$e, e' : \mathbb{F}_2^{3r} \to \{0, 1\},$$

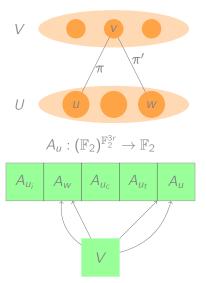
 $f : \mathbb{F}_2^r \to \{0, 1\}$

2. η , η' from noise distribution.

using Long Code Reduction

Query

1. $A_u(e), A_u(e+f \circ \pi + 1 + \eta)$ 2. $A_w(e'), A_w(e'+f \circ \pi' + \eta')$


Where

1.
$$e, e' : \mathbb{F}_2^{3r} \to \{0, 1\},$$

 $f : \mathbb{F}_2^r \to \{0, 1\}$

- 2. η , η' from noise distribution.
- Correct proofs are Long Code encodings of labels to U given by

$$A_u = (f(a))_{f \in (\mathbb{F}_2)^{\mathbb{F}_2^{3r}}}$$

using Long Code Reduction

Query

1. $A_u(e), A_u(e+f \circ \pi + 1 + \eta)$ 2. $A_w(e'), A_w(e'+f \circ \pi' + \eta')$

► Where

1.
$$e, e' : \mathbb{F}_2^{3r} \to \{0, 1\},$$

 $f : \mathbb{F}_2^r \to \{0, 1\}$

- 2. η , η' from noise distribution.
- Correct proofs are Long Code encodings of labels to U given by

$$A_u = (f(a))_{f \in (\mathbb{F}_2)^{\mathbb{F}_2^{3/2}}}$$

Bottleneck! : Proof size is $2^{2^{3r}}n^r$. Cannot go beyond $r = O(\log \log n)$.