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Introduction
Driver Monitoring Systems

Modern driver monitoring systems (DMSs) in Level-2+ self-driving-enabled cars aim to
enhance safety by estimating drivers’ readiness levels for driving and enabling safe
control handovers when necessary.

Fig. 1: A simplified illustration of a DMS.
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Introduction
Driver Monitoring Systems

These systems usually rely various sensors, which may be deployed at different in-car
locations, to comprehensively monitor drivers’ states, e.g.,

▶ RGB: optical details.

▶ Depth: 3D information.

▶ Infrared: thermal information.

▶ ECG: heart rates.

▶ Audio: speech and sound.

Hence, modern DMSs are multimodal (and multiview).
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Introduction
Our Work

Our work specifically focuses on driver action recognition, which involves classifying
drivers’ actions into normal driving and several non-driving-related activities (NDRAs),
e.g., texting and drinking.

(a) Top IR (b) Top Depth (c) Front IR (d) Front Depth

Fig. 2: Sample frames from the DAD dataset [1].
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Introduction
Our Work

Our contributions in this paper are as follows:

1. We propose a novel robust multiview multimodal DMS for driver action
recognition that leverages feature-level fusion through masked multi-head
self-attention (MHSA).

2. We manually annotated the anomalies in DAD dataset with 9 fine-grained classes
of non-driving-related activities (NDRAs).

3. We conduct extensive experiments on the DAD dataset to compare different
fusion strategies, assess the significance of individual views/modalities, and
evaluate the efficacy of patch masking in enhancing MHSA’s robustness against
view/modality collapses. Results show that our MHSA-based DMS achieves
state-of-the-art performance with an AUC-ROC score of 97.0%.
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Related Work
Driver Monitoring Datasets

▶ AUC-DD [2] is the first public dataset for DMSs. It was collected using an RGB
camera from a single side view and thus have some limitations.

Fig. 3: A sample from the AUC-DD dataset [2] illustrating that RGB is not robust to
illumination changes.
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Related Work
Driver Monitoring Datasets

▶ Later databases [1], [3]–[5] have incorporated additional views and modalities to
address these issues.

▶ For example, top and front views have also been introduced to capture the
driver’s hand and head movements amongst other movements.

▶ Regarding modalities, IR and depth have also become popular, as they can
provide thermally based features and geometry information, which are
complementary to the optical details from RGB.

▶ Among these datasets, we benchmark our models on DAD [1], the only one
designed for SAE L2+ with open-set recognition: its test set contains extra
classes of NDRAs in addition to those in the training split.



WARWICK

11/14

Related Work
Multimodal DMSs

Various multiview multimodal DMSs have also been proposed with different emphases:

▶ Kopuklu et al. [1] proposed a novel learning framework based on contrastive
learning.

▶ Ortega et al. [4] and Su et al. [6] proposed to leverage Conv-LSTM structures.

▶ Only Shan et al [7] proposed a feature-level modality fusion method, but it has
several drawback:

▶ Features are pooled before fusion, which leads to the loss of semantic
information.

▶ Its fusion module has the additional task of handling the temporal dimension.
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Thanks!
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