yzengmath1
Author
SaraZeng
Last Updated
10 anni fa
License
Creative Commons CC BY 4.0
Abstract
Math project......
\documentclass[12pt]{article}
\usepackage{geometry}
\pagestyle{empty}
\geometry{letterpaper}
\usepackage[parfill]{parskip}
\usepackage{amsmath}
\usepackage{graphicx}
\usepackage{amssymb}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{mathrsfs}
\usepackage{epstopdf}
\everymath{\displaystyle}
\textwidth = 7 in
\textheight = 8 in
\oddsidemargin = 0.0 in
\evensidemargin = 0.0 in
\topmargin = 0.0 in
\headheight = 0.0 in
\headsep = 0.0 in
\parskip = 0.1in
\parindent = 0.0in
\begin{document}
\section{How To Simplify Fractions to the Lowest Term \\ Ye Zeng}
\centerline{\includegraphics[scale=0.8]{yzengimg1.jpg}}
%Please list key words here. Use a new \item for each word. Please provide a short definition of each key word.
\subsection{Key Words}
\begin{itemize}
\item {\bf Polynomials} - An expression that can have constants, variables and exponents. \\
E.g. $5xy^2 - 3x + 5y^3 - 3$
\item {\bf Lowest term} - The numerator and denominator of a fraction have no common factor except number one.\\
E.g. $\frac{3}{5x}$
\item {\bf Numerator} - The top part of a fraction.
\item {\bf Denominator} - The bottom part of a fraction.
\end{itemize}
%Please put your sample problem below. It should sound like a test question and should be taken from a sample test, quiz or homework.
\subsection{Sample Question}
Which of the following shows the expression $\frac{3x}{10x+x^2}$ reduced to the lowest terms?
A. $\frac{3x}{10+x}$
B. $\frac{3}{10+x}$
C. $\frac{1}{7+x}$
D. $\frac{3}{10x}$
%Please show all work in your sample solution. Use colors where appropriate. Do not have too much information on one line (no more than 2 equal signs on any given line). Make sure your solution is correct
\subsection{Solution}
The answer is {\bf B}.
{\bf Steps to solve this question}
\begin{enumerate}
\item Combine like-terms.\\
$\frac{3x}{x(10+x)}$
\item Cancel x (the common factor) in both numerator and denominator.\\
$\frac{3}{10+x}$
\end{enumerate}
%You should have one step for each equal sign in your solution. Please use appropriate vocabulary and be as specific as possible. Again one \item for each step.
\subsection{Steps to Solve This Kind of Problem}
\begin{enumerate}
\item Always combine like-terms first.
\item Canceled if there is a common factor in both numerator and denominator.
\item If there's no common factor, that's the lowest term.
\end{enumerate}
\subsection{Challange Question}
{\bf Challenge Question}
\begin{center}
$\frac{3(x+1)}{x^2-1}$\\
\end{center}
{\bf Solution}
\begin{enumerate}
\item Factorization\\
$\frac{3(x+1)}{(x+1)(x-1)}$\\
\item Cancel $(x+1)$ in both numerator and denominator.\\
$\frac{3}{x-1}$
\end{enumerate}
%Please add any other notes or important things to remember when solving this type of problem.
\subsection{Notes/other things to remember}
\begin{itemize}
\item $\frac{a^m}{a^n}$ = $a^{m - n}$
\item $({a^m})^{n}$ = ${a}^{mn}$
\item $\frac{am - an}{a}$
= $\frac{a(m - n)}{a}$
= $m - n$
\item $(x+y)^2$ = $x^2 + 2xy + y^2$
\item $(x-y)^2$ = $x^2 - 2xy + y^2$
\item $(x^2 - 1)$ = $(x+1)(x-1)$
\item $x^3-1$ = $(x-1)(x^2+x+1)$
\item $x^3+1$ = $(x+1)(x^2-x+1)$
\end{itemize}
\end{document}