Figures TIKZ du cours "L'effet Doppler"
Author
Jimmy Roussel
Last Updated
10 anni fa
License
Creative Commons CC BY 4.0
Abstract
Figures TIKZ du cours "L'effet Doppler" disponible à l'adresse : http://femto-physique.fr/optique/doppler.php
Figures TIKZ du cours "L'effet Doppler" disponible à l'adresse : http://femto-physique.fr/optique/doppler.php
% !TEX encoding = UTF-8 Unicode
% J.Roussel
%-------------------------------------------
\documentclass[11pt]{article}
\input{styles_ondes}
\title{Figures TIKZ du cours "L'effet Doppler"}
\begin{document}
\begin{tikzpicture}[scale=1,inner sep=0pt, outer sep=2pt,>=latex]
\draw[vecteur](0,0)--(1,0)node[midway, above]{$\overrightarrow{u}$};
\draw[force](0,0)--(2,3)node[right]{$\overrightarrow{v}_s$};
\draw[force](10,0)--++(0,-1)node[right]{$\overrightarrow{v}_r$};
\draw(0,0)node{•}node[below]{Source S}--(10,0)node{•}node[above]{Récepteur R};
\foreach \x in {1,2,3,4,5,6,7,8,9}{\draw (-10:\x) arc(-10:10:\x);}
\end{tikzpicture}
% ------
\begin{tikzpicture}[scale=1,inner sep=0pt, outer sep=2pt,>=latex]
\draw[force](0,0)--(2,3)node[right]{$\overrightarrow{v}_s$};
\draw(0,0)node{•}node[left]{S($t_1$)};
\draw(10,0)node{•}node[right]{R};
\foreach \x in {0.5,0.6,0.7,0.8,0.9}{\draw (-20:\x) arc(-20:20:\x);}
\draw[gray](0,0)--(10,0)node[midway,above]{$d_1$};
\draw(1,1.5)node{•}node[left]{S($t_1+T_0$)};
\foreach \x in {0.5,0.6,0.7,0.8,0.9}{\draw[shift={(1,1.5)}] (-20:\x) arc(-20:20:\x);}
\draw[gray](1,1.5)--(10,0) node[midway,above]{$d_2$};
\end{tikzpicture}
% -------
\begin{tikzpicture}[scale=1,inner sep=0pt, outer sep=2pt,>=latex]
\draw[force](8.7,0)--++(-2,1)node[right]{$\overrightarrow{v}_s$};
\draw(0,0)node{•}node[left]{S};
\draw(8.7,0)node{•}node[right]{R($t'_1$)};
\foreach \x in {0.5,0.6,0.7,2.5,2.6,2.7,4.5,4.6,4.7,6.5,6.6,6.7,8.5,8.6,8.7}{\draw[gray] (-10:\x) arc(-10:10:\x);}
\foreach \x in {1.5,1.6,1.7,3.5,3.6,3.7,5.5,5.6,5.7,7.5,7.6,7.7,9.5,9.6,9.7}{\draw[gray] (-10:\x) arc(-10:10:\x);}
\draw(7.7,0.5)node{•}node[right]{R($t'_2$)};
\end{tikzpicture}
% ------
\begin{tikzpicture}[scale=1]
\begin{scope}
\draw[shift={(0,1.5)}]node{$S_1$ : Signal de fréquence $\nu_0$};
\draw [domain=-2:2,color=blue,samples=200,smooth,] plot (\x,{sin(20*\x r)});
\draw [->](-2,0)--++(4.5,0) node[above left]{$t$};
\end{scope}
\begin{scope}[shift={(0,-4)}]
\draw[shift={(0,1.5)}]node{$S_2$ : Signal de fréquence $\nu'=\nu_0+\Delta \nu$};
\draw [domain=-2:2,color=red,samples=200,smooth,] plot (\x,{sin(22*\x r)});
\draw [->](-2,0)--++(4.5,0) node[above left]{$t$};
\end{scope}
\begin{scope}[shift={(7.5,-2)}]
\draw (-3.5,0)node{$\Longrightarrow$};
\draw[shift={(0,2.5)}]node{Signal mélangé $S_1+S_2$};
\draw [domain=-2.5:3,samples=1000] plot (\x,{sin(22*\x r)+sin(20*\x r)});
\draw [domain=-2.5:3,samples=100,color=red,dashed] plot (\x,{2*cos(\x r)});
\draw [domain=-2.5:3,samples=100,color=red,dashed] plot (\x,{-2*cos(\x r)});
\draw [->](-2.5,0)--++(6,0) node[above left]{$t$};
\draw [|<->|](-1.57,-2)--++(3.14,0) node[midway,below]{$1/\Delta \nu$};
\end{scope}
\end{tikzpicture}
% ------
\begin{tikzpicture}[scale=0.8]
%------ courbe de Gauss -----
\def \xMoy{5};%moyenne
\def \ecartType {1};%ecart-type
\def \largeur{0.2};%demi-largeur à mi-hauteur de la lorentzienne
\begin{axis}[
height=8cm,width=8cm,
% title={$I(\nu)=I_{\rm max}\mathrm{e}^{-\frac{(\nu-\nu_0)^2}{2\sigma^2}}$},
xlabel={Fréquence},
inner axis line style={=>},
ylabel={Intensité},
axis x line=bottom,
axis y line=left,
xtick={\empty},
ytick={\empty},
xmin=0,
xmax=10,
ymin=0,
ymax=3,
grid=major,
legend style = {at={(0.5,1.)},anchor=south},
]
\addplot+[dashed,mark=none,domain=0:10,samples=200]{(3*\largeur^2)/(\largeur^2+(x-\xMoy)^2)};
\addlegendentry{raie à 0~K}
\addplot+[mark=none,domain=0:10,samples=100]{exp(-(x-\xMoy)^2/(2*\ecartType^2))};
\addlegendentry{raie élargie par effet Doppler}
\addplot+[mark=none,fill=gray!20,draw=black,opacity=0.5,domain=3.8:6.2] {exp(-(x-\xMoy)^2/(2*\ecartType^2))}\closedcycle;
\draw[<->] (axis cs:3.8,0.5)--(axis cs: 6.2,0.5) node[pos=0.5,above]{$\Delta\nu_{1/2}=\sqrt{8\ln2}\sigma$};
\end{axis}
\end{tikzpicture}
% ------
\begin{tikzpicture}[scale=0.8]
\def \centre{3};%fréquence centrale
\def \largeur{0.5};%largeur à mi-hauteur
\begin{axis}[
height=8cm,width=8cm,
title={$I(\nu)=I_{\rm max}\frac{\delta^2}{\delta^2+(\nu-\nu_0)^2}$},
xlabel={Fréquence},
axis x line=bottom,%middle,top,left,right
axis y line=middle,
inner axis line style={=>},
ylabel={Intensité},
xtick={\empty},
ytick={\empty},
xmin=0,
xmax=6,
ymin=0,
ymax=1,
grid=major
]
\addplot+[mark=none,domain=0:6,samples=200]{(\largeur^2)/(\largeur^2+(x-\centre)^2)};
\draw[<->] (axis cs:2.5,0.5)--(axis cs: 3.5,0.5) node[right]{$\Delta\nu_{1/2}=2\delta$};
\end{axis}
\end{tikzpicture}
% ------
\begin{tikzpicture}[scale=1,decoration={markings,mark=at position 7mm
with {\arrow[red]{stealth};},mark=at position -7mm with {\arrow[red]
{stealth};}}]
\draw (0,1)node{•}node[left]{S};
\shadedraw[white,right color=white,left color=gray] (5,-1)--++(0,2)--++(0.5,0)--++(0,-2)--cycle;
\draw[ultra thick] (5,1)--++(0,-2)node[pos=0.1,left]{M};
\draw (0,-1)node{•}node[left]{R};
\draw[red,postaction={decorate}](0,1)--(5,0)--(0,-1);
\draw[dashed,red,postaction={decorate}](10,1)node{•}node[right]{S'}--(5,0);
\draw[force](5,0)--++(-1,0)node[left]{$\overrightarrow{v}$};
\draw[dashed](5,0)--++(-3,0);
\draw (3,0) arc(180:191.3:2);
\draw[shift={(5,0)}](185:2.5)node{$\alpha$};
\draw[force](10,1)--++(-2,0)node[left]{$2\overrightarrow{v}$};
\draw[->,thick](10,1)--++(-1,-0.2)node[below]{$\overrightarrow{u}$};
\end{tikzpicture}
\begin{tikzpicture}[scale=1,decoration={markings,mark=at position 0.43 with {\arrow[blue]{stealth};}},]
\colorlet{darkblue}{blue!50!black};
\def \parametre {6};%parametre
\def \alphaM {180};%angle correspondant à la planète
\def \alphaP {20};%angle correspondant au périgée%
\def \masseUn {5};%masse de l'étoile
\def \masseDeux {1};%masse de la planète
\def \excentric {0};%excentricité
\def \parametreUn {-\parametre*\masseDeux/(\masseUn+\masseDeux)};
\def \parametreDeux {\parametre*\masseUn/(\masseUn+\masseDeux)};
\coordinate (M) at ({\parametre*cos(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))},{\parametre*sin(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))});
\coordinate (MUn) at ({\parametreUn*cos(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))},{\parametreUn*sin(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))});
\coordinate (MDeux) at ({\parametreDeux*cos(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))},{\parametreDeux*sin(\alphaM)/(1+\excentric*cos(\alphaM-\alphaP))});
\clip (-5.5,-2)rectangle (5.5,2);
\draw[->,thin,rotate=20](-6,0)--++(5.5,0) node[pos=0.3,fill=white ,rotate=20]{\small ligne de visée};
\draw[postaction={decorate},blue,thick,variable=\t , domain=0:360,samples=150] plot ({\parametreUn*cos(\t)/(1+\excentric*cos(\t-\alphaP))},{\parametreUn*sin(\t)/(1+\excentric*cos(\t-\alphaP))});
\draw[postaction={decorate},blue,thick,variable=\t , domain=0:360,samples=150] plot ({\parametreDeux*cos(\t)/(1+\excentric*cos(\t-\alphaP))},{\parametreDeux*sin(\t)/(1+\excentric*cos(\t-\alphaP))});
\draw[ultra thin, gray] (MUn)node[right=10pt]{\small E}--(0,0) node{$\bullet$} node[above left]{\small G}--(MDeux)node[left=2pt]{\small P};
\draw[ball color=yellow] (MUn) circle(0.25);
\draw (MDeux) node{•};
\draw[vecteur](MUn)--++(0,1)node[right]{$v_*=\frac{2\pi a_*}{T}$};
\draw[->](0,0)--(0,1)node[midway,right]{$a_*$};
\photon{shift={(0,-0.5)},rotate=200}{}{};
\end{tikzpicture}
\end{document}