Gallery Items tagged Math

Template for Lecture Notes/Papers/Involved Homeworks
This template has all of the macros I have found useful in the past 4 years of my undergrad. I got most of these macros from my REU mentor Prof. Raul Gomez. This should be useful for anyone doing algebra/topology/algebraic geometry/geometry/category theory or anything else using diagrams. Also has some useful templates for theorems, lemmas, observations and proofs. It has all of the standard things that mathematician need in her preamble, like hyperref, amsmath, all the packages that are used for commutative diagrams, and much more.
Hari Rau-Murthy

I love math
j'aimes les math par une courbe paramétrique de cœur !
Noureddine

The Math Mag Article Template
Downloaded from Mathematics Magazine's website. Mathematics Magazine offers lively, readable, and appealing exposition on a wide range of mathematical topics.
Mathematical Association of America

Estudio de los factores de disipación de la mica-epoxi en pruebas de calentamiento para placas de circuitos eléctricos
Comprensión de un estudio realizado en la mica-epoxi para placas de circuitos. El estudio consistió en pruebas de resistencia para medir el desgaste en el tiempo del material y así determinar su tiempo de vida aproximado.
Luis Alberto González José

Homework 3: Mathematical Methods I: Fall 2017
hw3
Udit Gupta

ejerciciosBachi
Plantilla para crear ejercicios
Pablo

On the quantum differentiation of smooth real-valued functions
Calculating the value of Ck ∈ {1, ∞} class of smoothness real-valued function's derivative in point of R+ in radius of convergence of its Taylor polynomial (or series), applying an analog of Newton's binomial theorem and q-difference operator. (P,q)-power difference introduced in section 5. Additionally, by means of Newton's interpolation formula, the discrete analog of Taylor series, interpolation using q-difference and p,q-power difference is shown.
Kolosov Petro

Series Representation of Power Function
In this paper, we derive and prove, by means of Binomial theorem and Faulhaber's formula, the following identity
between $m$-order polynomials in \(T\)
\(\sum_{k=1}^{\ell}\sum_{j=0}^m A_{m,j}k^j(T-k)^j=\sum_{k=0}^{m}(-1)^{m-k}U_m(\ell,k)\cdot T^k=T^{2m+1}, \ \ell=T\in\mathbb{N}.\)
Kolosov Petro

IMT Test Flight
Proof 1
Rafael Díaz de Leon