Based on the paper Sometimes Newton's Method Cycles, we first asked ourselves if there were any Newtonian Method Cycle functions which have non-trivial guesses. We encountered a way to create functions that cycle between a set number of points with any initial, non-trivial guesses when Newton's Method is applied. We exercised these possibilities through the methods of 2-cycles, 3-cycles and 4-cycles. We then generalized these cycles into k-cycles. After generalizing Newton's Method, we found the conditions that skew the cycles into a spiral pattern which will either converge, diverge or become a near-cycle. Once we obtained all this information, we explored additional questions that rose up from our initial exploration of Newton's Method.

A very quick and easy to understand introduction to Gram-Schmidt Orthogonalization
(Orthonormalization) and how to obtain QR decomposition of a matrix using it.